A new stand-alone anterior lumbar interbody fusion device : Biomechanical comparison with established fixation techniques
Established lumbar fixation methods were assessed biomechanically, and a comparison was made with a new stand-alone anterior lumbar interbody cage device incorporating integrated anterior fixation. To compare the stability of a new stand-alone anterior implant (Test-device) with established fixation...
Gespeichert in:
Veröffentlicht in: | Spine (Philadelphia, Pa. 1976) Pa. 1976), 2005-12, Vol.30 (23), p.2631-2636 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2636 |
---|---|
container_issue | 23 |
container_start_page | 2631 |
container_title | Spine (Philadelphia, Pa. 1976) |
container_volume | 30 |
creator | CAIN, Christopher M. J SCHLEICHER, Philip GERLACH, Rene PFLUGMACHER, Robert SCHOLZ, Matti KANDZIORA, Frank |
description | Established lumbar fixation methods were assessed biomechanically, and a comparison was made with a new stand-alone anterior lumbar interbody cage device incorporating integrated anterior fixation.
To compare the stability of a new stand-alone anterior implant (Test-device) with established fixation methods to assess its suitability for clinical use. Our hypothesis being that the Test-device would provide stability comparable to that provided by an anterior cage when supplemented with posterior pedicle screw fixation.
It is accepted that the use of rigid pedicle screw instrumentation increases the chance of achieving a solid fusion, but its use may be associated with a significant increase in postoperative morbidity caused by disruption of the posterior musculature. It is also evident that this increased fusion rate is generally not associated with increased clinical success. This dilemma has led to a search for a solution and to the development of the Test-device anterior lumbar interbody device.
The kinematic properties of either the L3-L4 or L4-L5 lumbar motion segment of 8 cadaveric lumbar spines have been tested using the following sequence of fixation: intact, Test-device, Test-device and translaminar facet screws (TS), Cage and TS, Cage and Universal Spine System (USS), and Cage and small stature USS.
All fixation techniques except the cage and TS decreased (P < 0.05) range of motion (ROM), neutral zone (NZ), and elastic zone (EZ), and increased (P < 0.05) stiffness in comparison to the intact motion segment in all test modes. There was a significant increase (P < 0.01) in the ROM, NZ, and EZ, and decrease in the stiffness of the cage and TS group in comparison to all other stabilization techniques in flexion and rotation. There was no significant difference in the ROM, NZ, EZ, and stiffness between the Test-device and cage and USS groups in flexion, extension, and bending. The Test-device resulted in a significantly lower EZ (P < 0.05) and a significantly higher stiffness (P < 0.05) in rotation than all other fixation methods.
The Test-device alone provided similar and the Test-device and TS higher stability than the pedicle screw constructs evaluated. These results support progression to clinical trials using the Test-device as a stand-alone implant. |
doi_str_mv | 10.1097/01.brs.0000187897.25889.54 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68855137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68855137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-6689bf6b916f6824381b01198e93fee7643c598ea7fe13840eb863cb36e5ac353</originalsourceid><addsrcrecordid>eNpFkE1r3DAQhkVpaLZp_0IRhfZmR7Ksr9yS0C8I5JKehSSPWRVb2kp20_33lZuFncsw8LwzzIPQR0paSrS8JrR1ubSkFlVSadl2XCnd8v4V2lHeqYZSrl-jHWGia7qeiUv0tpRflReM6jfokm5d9nqHjrc4wjMui41DY6cUAdu4QA4p42mdnc04bLNLwxGPawkp4gH-BA_4Bt-FNIPf2xi8nbBP88HmUCrxHJY9hrrUTaHsYcBj-GuXLbtUPobfK5R36GK0U4H3p36Ffn798nT_vXl4_Pbj_vah8UyKpRFCaTcKp6kYharPKOoIpVqBZiOAFD3zvE5WjkCZ6gk4JZh3TAC3nnF2hT6_7D3ktN1dzByKh2myEdJajFCKc8pkBW9eQJ9TKRlGc8hhtvloKDGbeEOoqeLNWbz5L97wvoY_nK6sbobhHD2ZrsCnE2BLtTVmG30oZ052Wggu2T-odY8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68855137</pqid></control><display><type>article</type><title>A new stand-alone anterior lumbar interbody fusion device : Biomechanical comparison with established fixation techniques</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>CAIN, Christopher M. J ; SCHLEICHER, Philip ; GERLACH, Rene ; PFLUGMACHER, Robert ; SCHOLZ, Matti ; KANDZIORA, Frank</creator><creatorcontrib>CAIN, Christopher M. J ; SCHLEICHER, Philip ; GERLACH, Rene ; PFLUGMACHER, Robert ; SCHOLZ, Matti ; KANDZIORA, Frank</creatorcontrib><description>Established lumbar fixation methods were assessed biomechanically, and a comparison was made with a new stand-alone anterior lumbar interbody cage device incorporating integrated anterior fixation.
To compare the stability of a new stand-alone anterior implant (Test-device) with established fixation methods to assess its suitability for clinical use. Our hypothesis being that the Test-device would provide stability comparable to that provided by an anterior cage when supplemented with posterior pedicle screw fixation.
It is accepted that the use of rigid pedicle screw instrumentation increases the chance of achieving a solid fusion, but its use may be associated with a significant increase in postoperative morbidity caused by disruption of the posterior musculature. It is also evident that this increased fusion rate is generally not associated with increased clinical success. This dilemma has led to a search for a solution and to the development of the Test-device anterior lumbar interbody device.
The kinematic properties of either the L3-L4 or L4-L5 lumbar motion segment of 8 cadaveric lumbar spines have been tested using the following sequence of fixation: intact, Test-device, Test-device and translaminar facet screws (TS), Cage and TS, Cage and Universal Spine System (USS), and Cage and small stature USS.
All fixation techniques except the cage and TS decreased (P < 0.05) range of motion (ROM), neutral zone (NZ), and elastic zone (EZ), and increased (P < 0.05) stiffness in comparison to the intact motion segment in all test modes. There was a significant increase (P < 0.01) in the ROM, NZ, and EZ, and decrease in the stiffness of the cage and TS group in comparison to all other stabilization techniques in flexion and rotation. There was no significant difference in the ROM, NZ, EZ, and stiffness between the Test-device and cage and USS groups in flexion, extension, and bending. The Test-device resulted in a significantly lower EZ (P < 0.05) and a significantly higher stiffness (P < 0.05) in rotation than all other fixation methods.
The Test-device alone provided similar and the Test-device and TS higher stability than the pedicle screw constructs evaluated. These results support progression to clinical trials using the Test-device as a stand-alone implant.</description><identifier>ISSN: 0362-2436</identifier><identifier>EISSN: 1528-1159</identifier><identifier>DOI: 10.1097/01.brs.0000187897.25889.54</identifier><identifier>PMID: 16319749</identifier><identifier>CODEN: SPINDD</identifier><language>eng</language><publisher>Philadelphia, PA: Lippincott</publisher><subject>Adult ; Biological and medical sciences ; Biomechanical Phenomena - instrumentation ; Biomechanical Phenomena - methods ; Bone Screws - standards ; Cerebrospinal fluid. Meninges. Spinal cord ; Confidence Intervals ; Female ; Humans ; Internal Fixators - standards ; Intervertebral Disc - physiology ; Intervertebral Disc - surgery ; Investigative techniques, diagnostic techniques (general aspects) ; Lumbar Vertebrae - physiology ; Lumbar Vertebrae - surgery ; Male ; Medical sciences ; Middle Aged ; Nervous system ; Nervous system (semeiology, syndromes) ; Neurology ; Orthopedic Fixation Devices - standards ; Orthopedic surgery ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Spinal Fusion - instrumentation ; Spinal Fusion - methods ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><ispartof>Spine (Philadelphia, Pa. 1976), 2005-12, Vol.30 (23), p.2631-2636</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-6689bf6b916f6824381b01198e93fee7643c598ea7fe13840eb863cb36e5ac353</citedby><cites>FETCH-LOGICAL-c376t-6689bf6b916f6824381b01198e93fee7643c598ea7fe13840eb863cb36e5ac353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17296657$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16319749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CAIN, Christopher M. J</creatorcontrib><creatorcontrib>SCHLEICHER, Philip</creatorcontrib><creatorcontrib>GERLACH, Rene</creatorcontrib><creatorcontrib>PFLUGMACHER, Robert</creatorcontrib><creatorcontrib>SCHOLZ, Matti</creatorcontrib><creatorcontrib>KANDZIORA, Frank</creatorcontrib><title>A new stand-alone anterior lumbar interbody fusion device : Biomechanical comparison with established fixation techniques</title><title>Spine (Philadelphia, Pa. 1976)</title><addtitle>Spine (Phila Pa 1976)</addtitle><description>Established lumbar fixation methods were assessed biomechanically, and a comparison was made with a new stand-alone anterior lumbar interbody cage device incorporating integrated anterior fixation.
To compare the stability of a new stand-alone anterior implant (Test-device) with established fixation methods to assess its suitability for clinical use. Our hypothesis being that the Test-device would provide stability comparable to that provided by an anterior cage when supplemented with posterior pedicle screw fixation.
It is accepted that the use of rigid pedicle screw instrumentation increases the chance of achieving a solid fusion, but its use may be associated with a significant increase in postoperative morbidity caused by disruption of the posterior musculature. It is also evident that this increased fusion rate is generally not associated with increased clinical success. This dilemma has led to a search for a solution and to the development of the Test-device anterior lumbar interbody device.
The kinematic properties of either the L3-L4 or L4-L5 lumbar motion segment of 8 cadaveric lumbar spines have been tested using the following sequence of fixation: intact, Test-device, Test-device and translaminar facet screws (TS), Cage and TS, Cage and Universal Spine System (USS), and Cage and small stature USS.
All fixation techniques except the cage and TS decreased (P < 0.05) range of motion (ROM), neutral zone (NZ), and elastic zone (EZ), and increased (P < 0.05) stiffness in comparison to the intact motion segment in all test modes. There was a significant increase (P < 0.01) in the ROM, NZ, and EZ, and decrease in the stiffness of the cage and TS group in comparison to all other stabilization techniques in flexion and rotation. There was no significant difference in the ROM, NZ, EZ, and stiffness between the Test-device and cage and USS groups in flexion, extension, and bending. The Test-device resulted in a significantly lower EZ (P < 0.05) and a significantly higher stiffness (P < 0.05) in rotation than all other fixation methods.
The Test-device alone provided similar and the Test-device and TS higher stability than the pedicle screw constructs evaluated. These results support progression to clinical trials using the Test-device as a stand-alone implant.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena - instrumentation</subject><subject>Biomechanical Phenomena - methods</subject><subject>Bone Screws - standards</subject><subject>Cerebrospinal fluid. Meninges. Spinal cord</subject><subject>Confidence Intervals</subject><subject>Female</subject><subject>Humans</subject><subject>Internal Fixators - standards</subject><subject>Intervertebral Disc - physiology</subject><subject>Intervertebral Disc - surgery</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Lumbar Vertebrae - physiology</subject><subject>Lumbar Vertebrae - surgery</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Nervous system</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><subject>Orthopedic Fixation Devices - standards</subject><subject>Orthopedic surgery</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Spinal Fusion - instrumentation</subject><subject>Spinal Fusion - methods</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><issn>0362-2436</issn><issn>1528-1159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1r3DAQhkVpaLZp_0IRhfZmR7Ksr9yS0C8I5JKehSSPWRVb2kp20_33lZuFncsw8LwzzIPQR0paSrS8JrR1ubSkFlVSadl2XCnd8v4V2lHeqYZSrl-jHWGia7qeiUv0tpRflReM6jfokm5d9nqHjrc4wjMui41DY6cUAdu4QA4p42mdnc04bLNLwxGPawkp4gH-BA_4Bt-FNIPf2xi8nbBP88HmUCrxHJY9hrrUTaHsYcBj-GuXLbtUPobfK5R36GK0U4H3p36Ffn798nT_vXl4_Pbj_vah8UyKpRFCaTcKp6kYharPKOoIpVqBZiOAFD3zvE5WjkCZ6gk4JZh3TAC3nnF2hT6_7D3ktN1dzByKh2myEdJajFCKc8pkBW9eQJ9TKRlGc8hhtvloKDGbeEOoqeLNWbz5L97wvoY_nK6sbobhHD2ZrsCnE2BLtTVmG30oZ052Wggu2T-odY8Y</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>CAIN, Christopher M. J</creator><creator>SCHLEICHER, Philip</creator><creator>GERLACH, Rene</creator><creator>PFLUGMACHER, Robert</creator><creator>SCHOLZ, Matti</creator><creator>KANDZIORA, Frank</creator><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051201</creationdate><title>A new stand-alone anterior lumbar interbody fusion device : Biomechanical comparison with established fixation techniques</title><author>CAIN, Christopher M. J ; SCHLEICHER, Philip ; GERLACH, Rene ; PFLUGMACHER, Robert ; SCHOLZ, Matti ; KANDZIORA, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-6689bf6b916f6824381b01198e93fee7643c598ea7fe13840eb863cb36e5ac353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena - instrumentation</topic><topic>Biomechanical Phenomena - methods</topic><topic>Bone Screws - standards</topic><topic>Cerebrospinal fluid. Meninges. Spinal cord</topic><topic>Confidence Intervals</topic><topic>Female</topic><topic>Humans</topic><topic>Internal Fixators - standards</topic><topic>Intervertebral Disc - physiology</topic><topic>Intervertebral Disc - surgery</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Lumbar Vertebrae - physiology</topic><topic>Lumbar Vertebrae - surgery</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Nervous system</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><topic>Orthopedic Fixation Devices - standards</topic><topic>Orthopedic surgery</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Spinal Fusion - instrumentation</topic><topic>Spinal Fusion - methods</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CAIN, Christopher M. J</creatorcontrib><creatorcontrib>SCHLEICHER, Philip</creatorcontrib><creatorcontrib>GERLACH, Rene</creatorcontrib><creatorcontrib>PFLUGMACHER, Robert</creatorcontrib><creatorcontrib>SCHOLZ, Matti</creatorcontrib><creatorcontrib>KANDZIORA, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Spine (Philadelphia, Pa. 1976)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CAIN, Christopher M. J</au><au>SCHLEICHER, Philip</au><au>GERLACH, Rene</au><au>PFLUGMACHER, Robert</au><au>SCHOLZ, Matti</au><au>KANDZIORA, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new stand-alone anterior lumbar interbody fusion device : Biomechanical comparison with established fixation techniques</atitle><jtitle>Spine (Philadelphia, Pa. 1976)</jtitle><addtitle>Spine (Phila Pa 1976)</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>30</volume><issue>23</issue><spage>2631</spage><epage>2636</epage><pages>2631-2636</pages><issn>0362-2436</issn><eissn>1528-1159</eissn><coden>SPINDD</coden><abstract>Established lumbar fixation methods were assessed biomechanically, and a comparison was made with a new stand-alone anterior lumbar interbody cage device incorporating integrated anterior fixation.
To compare the stability of a new stand-alone anterior implant (Test-device) with established fixation methods to assess its suitability for clinical use. Our hypothesis being that the Test-device would provide stability comparable to that provided by an anterior cage when supplemented with posterior pedicle screw fixation.
It is accepted that the use of rigid pedicle screw instrumentation increases the chance of achieving a solid fusion, but its use may be associated with a significant increase in postoperative morbidity caused by disruption of the posterior musculature. It is also evident that this increased fusion rate is generally not associated with increased clinical success. This dilemma has led to a search for a solution and to the development of the Test-device anterior lumbar interbody device.
The kinematic properties of either the L3-L4 or L4-L5 lumbar motion segment of 8 cadaveric lumbar spines have been tested using the following sequence of fixation: intact, Test-device, Test-device and translaminar facet screws (TS), Cage and TS, Cage and Universal Spine System (USS), and Cage and small stature USS.
All fixation techniques except the cage and TS decreased (P < 0.05) range of motion (ROM), neutral zone (NZ), and elastic zone (EZ), and increased (P < 0.05) stiffness in comparison to the intact motion segment in all test modes. There was a significant increase (P < 0.01) in the ROM, NZ, and EZ, and decrease in the stiffness of the cage and TS group in comparison to all other stabilization techniques in flexion and rotation. There was no significant difference in the ROM, NZ, EZ, and stiffness between the Test-device and cage and USS groups in flexion, extension, and bending. The Test-device resulted in a significantly lower EZ (P < 0.05) and a significantly higher stiffness (P < 0.05) in rotation than all other fixation methods.
The Test-device alone provided similar and the Test-device and TS higher stability than the pedicle screw constructs evaluated. These results support progression to clinical trials using the Test-device as a stand-alone implant.</abstract><cop>Philadelphia, PA</cop><cop>Hagerstown, MD</cop><pub>Lippincott</pub><pmid>16319749</pmid><doi>10.1097/01.brs.0000187897.25889.54</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-2436 |
ispartof | Spine (Philadelphia, Pa. 1976), 2005-12, Vol.30 (23), p.2631-2636 |
issn | 0362-2436 1528-1159 |
language | eng |
recordid | cdi_proquest_miscellaneous_68855137 |
source | MEDLINE; Journals@Ovid Complete |
subjects | Adult Biological and medical sciences Biomechanical Phenomena - instrumentation Biomechanical Phenomena - methods Bone Screws - standards Cerebrospinal fluid. Meninges. Spinal cord Confidence Intervals Female Humans Internal Fixators - standards Intervertebral Disc - physiology Intervertebral Disc - surgery Investigative techniques, diagnostic techniques (general aspects) Lumbar Vertebrae - physiology Lumbar Vertebrae - surgery Male Medical sciences Middle Aged Nervous system Nervous system (semeiology, syndromes) Neurology Orthopedic Fixation Devices - standards Orthopedic surgery Radiodiagnosis. Nmr imagery. Nmr spectrometry Spinal Fusion - instrumentation Spinal Fusion - methods Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases |
title | A new stand-alone anterior lumbar interbody fusion device : Biomechanical comparison with established fixation techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20stand-alone%20anterior%20lumbar%20interbody%20fusion%20device%20:%20Biomechanical%20comparison%20with%20established%20fixation%20techniques&rft.jtitle=Spine%20(Philadelphia,%20Pa.%201976)&rft.au=CAIN,%20Christopher%20M.%20J&rft.date=2005-12-01&rft.volume=30&rft.issue=23&rft.spage=2631&rft.epage=2636&rft.pages=2631-2636&rft.issn=0362-2436&rft.eissn=1528-1159&rft.coden=SPINDD&rft_id=info:doi/10.1097/01.brs.0000187897.25889.54&rft_dat=%3Cproquest_cross%3E68855137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68855137&rft_id=info:pmid/16319749&rfr_iscdi=true |