Structural Insights into HypB, a GTP-binding Protein That Regulates Metal Binding
HypB is a prokaryotic metal-binding guanine nucleotide-binding protein that is essential for nickel incorporation into hydrogenases. Here we solved the x-ray structure of HypB from Methanocaldococcus jannaschii. It shows that the G-domain has a different topology than the Ras-like proteins and belon...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2006-09, Vol.281 (37), p.27492-27502 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | HypB is a prokaryotic metal-binding guanine nucleotide-binding protein that is essential for nickel incorporation into hydrogenases. Here we solved the x-ray structure of HypB from Methanocaldococcus jannaschii. It shows that the G-domain has a different topology than the Ras-like proteins and belongs to the SIMIBI (after Signal Recognition Particle, MinD and BioD) class of NTP-binding proteins. We show that HypB undergoes nucleotide-dependent dimerization, which is apparently a common feature of SIMIBI class G-proteins. The nucleotides are located in the dimer interface and are contacted by both subunits. The active site features residues from both subunits arguing that hydrolysis also requires dimerization. Two metal-binding sites are found, one of which is dependent on the state of bound nucleotide. A totally conserved ENV/IGNLV/ICP motif in switch II relays the nucleotide binding with the metal ionbinding site. The homology with NifH, the Fe protein subunit of nitrogenase, suggests a mechanistic model for the switch-dependent incorporation of a metal ion into hydrogenases. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M600809200 |