Analysis of sugar chain-binding specificity of tomato lectin using lectin blot: recognition of high mannose-type N-glycans produced by plants and yeast
The sugar chain-binding specificity of tomato lectin (LEA) against glycoproteins was investigated qualitatively using lectin blot analysis. Glycoproteins containing tri- and tetra-antennary complex-type N-glycans were stained with LEA. Unexpectedly, glycoproteins containing high mannose-type N-glyca...
Gespeichert in:
Veröffentlicht in: | Glycoconjugate journal 2005-11, Vol.22 (7-9), p.453-461 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sugar chain-binding specificity of tomato lectin (LEA) against glycoproteins was investigated qualitatively using lectin blot analysis. Glycoproteins containing tri- and tetra-antennary complex-type N-glycans were stained with LEA. Unexpectedly, glycoproteins containing high mannose-type N-glycans and a horseradish peroxidase were stained with LEA. LEA blot analysis of the glycoproteins accompanied by treatment with exoglycosidase revealed that the binding site of LEA for the complex-type N-glycans was the N-acetyllactosaminyl side chains, whereas the proximal chitobiose core appeared to be the binding site of LEA for high mannose-type N-glycans. Despite these results, the glycoproteins did not inhibit the hemagglutinating activity of LEA. Among the chitin-binding lectins compared, potato tuber lectin showed specificity similar to LEA on lectin blot analysis, while Datura stramonium lectin and wheat germ agglutinin (WGA) did not interact with glycoproteins containing high mannose-type N-glycans, except that RNase B was stained by WGA. Based on these observations, LEA blot analysis was applied to sugar chain analysis of tomato glycoproteins. The most abundant LEA-reactive glycoprotein was purified from the exocarp of ripe tomato fruits, and was identified as the tomato anionic peroxidase1 (TAP1). These results suggest that LEA interacts with glycoproteins produced by tomatoes, which participate in biological activities in tomato plants. |
---|---|
ISSN: | 0282-0080 1573-4986 |
DOI: | 10.1007/s10719-005-5329-4 |