A mathematical model of N-linked glycosylation

Metabolic engineering of N‐linked oligosaccharide biosynthesis to produce novel glycoforms or glycoform distributions of a recombinant glycoprotein can potentially lead to an improved therapeutic performance of the glycoprotein product. A mathematical model for the initial stages of this process, up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2005-12, Vol.92 (6), p.711-728
Hauptverfasser: Krambeck, Frederick J., Betenbaugh, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 6
container_start_page 711
container_title Biotechnology and bioengineering
container_volume 92
creator Krambeck, Frederick J.
Betenbaugh, Michael J.
description Metabolic engineering of N‐linked oligosaccharide biosynthesis to produce novel glycoforms or glycoform distributions of a recombinant glycoprotein can potentially lead to an improved therapeutic performance of the glycoprotein product. A mathematical model for the initial stages of this process, up to the first galactosylation of an oligosaccharide, was previously developed by Umana and Bailey (1997) (UB1997). Building on this work, an extended model is developed to include further galactosylation, fucosylation, extension of antennae by N‐acetyllactosamine repeats, and sialylation. This allows many more structural features to be predicted. A number of simplifying assumptions are also relaxed to incorporate more variables for the control of glycoforms. The full model generates 7565 oligosaccharide structures in a network of 22,871 reactions. Methods for solving the model for the complete product distribution and adjusting the parameters to match experimental data are also developed. A basal set of kinetic parameters for the enzyme‐catalyzed reactions acting on free oligosaccharide substrates is obtained from the previous model and existing literature. Enzyme activities are adjusted to match experimental glycoform distributions for Chinese Hamster Ovary (CHO). The model is then used to predict the effect of increasing expression of a target glycoprotein on the product glycoform distribution and evaluate appropriate metabolic engineering strategies to return the glycoform profile to its original distribution pattern. This model may find significant utility in the future to predict glycosylation patterns and direct glycoengineering projects to optimize glycoform distributions. © 2005 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.20645
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68827770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68827770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4855-e6c5dd849bcc0a7391a966d2675c05abf62dad4c0f37b33c736978618a00f4a93</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWqsL_4AMLgQXU2_ek6UW36VutIKbkMlkdGymo5MW7b832qogiJt7ufCdwz0HoR0MPQxADvNq2iMgGF9BHQxKpkAUrKIOAIiUckU20GYIT_GUmRDraAMLwqSUtIN6R0ltpo8ujsoan9RN4XzSlMkw9dVk7Irkwc9tE-Y-As1kC62Vxge3vdxddHt6ctM_TwfXZxf9o0FqWcZ56oTlRZExlVsLRlKFjRKiIEJyC9zkpSCFKZiFksqcUiupUPE1nBmAkhlFu2h_4fvcNi8zF6a6roJ13puJa2ZBiywjMQD8C2LFGHAmI7j3C3xqZu0khtAEUymoiKuLDhaQbZsQWlfq57aqTTvXGPRH1TpWrT-rjuzu0nCW1674IZfdRuBwAbxW3s3_dtLHFzdflulCUYWpe_tWmHashaSS67vhmR5djS4JuWe6T98BFm2UfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213763621</pqid></control><display><type>article</type><title>A mathematical model of N-linked glycosylation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Krambeck, Frederick J. ; Betenbaugh, Michael J.</creator><creatorcontrib>Krambeck, Frederick J. ; Betenbaugh, Michael J.</creatorcontrib><description>Metabolic engineering of N‐linked oligosaccharide biosynthesis to produce novel glycoforms or glycoform distributions of a recombinant glycoprotein can potentially lead to an improved therapeutic performance of the glycoprotein product. A mathematical model for the initial stages of this process, up to the first galactosylation of an oligosaccharide, was previously developed by Umana and Bailey (1997) (UB1997). Building on this work, an extended model is developed to include further galactosylation, fucosylation, extension of antennae by N‐acetyllactosamine repeats, and sialylation. This allows many more structural features to be predicted. A number of simplifying assumptions are also relaxed to incorporate more variables for the control of glycoforms. The full model generates 7565 oligosaccharide structures in a network of 22,871 reactions. Methods for solving the model for the complete product distribution and adjusting the parameters to match experimental data are also developed. A basal set of kinetic parameters for the enzyme‐catalyzed reactions acting on free oligosaccharide substrates is obtained from the previous model and existing literature. Enzyme activities are adjusted to match experimental glycoform distributions for Chinese Hamster Ovary (CHO). The model is then used to predict the effect of increasing expression of a target glycoprotein on the product glycoform distribution and evaluate appropriate metabolic engineering strategies to return the glycoform profile to its original distribution pattern. This model may find significant utility in the future to predict glycosylation patterns and direct glycoengineering projects to optimize glycoform distributions. © 2005 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20645</identifier><identifier>PMID: 16247773</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biotechnology ; Cells, Cultured - metabolism ; CHO Cells ; Cricetinae ; Engineering ; Enzymes - metabolism ; Enzymes - pharmacokinetics ; Genetic recombination ; glycoform ; Glycosylation ; Hexoses - chemistry ; Hexoses - metabolism ; mammalian cell culture ; mathematical model ; Mathematical models ; metabolic engineering ; Metabolism ; Models, Biological ; N-linked glycosylation ; oligosaccharides ; Oligosaccharides - biosynthesis ; Oligosaccharides - chemistry ; Protein Transport ; Proteins</subject><ispartof>Biotechnology and bioengineering, 2005-12, Vol.92 (6), p.711-728</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><rights>(c) 2005 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Dec 20, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4855-e6c5dd849bcc0a7391a966d2675c05abf62dad4c0f37b33c736978618a00f4a93</citedby><cites>FETCH-LOGICAL-c4855-e6c5dd849bcc0a7391a966d2675c05abf62dad4c0f37b33c736978618a00f4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.20645$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.20645$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16247773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krambeck, Frederick J.</creatorcontrib><creatorcontrib>Betenbaugh, Michael J.</creatorcontrib><title>A mathematical model of N-linked glycosylation</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Metabolic engineering of N‐linked oligosaccharide biosynthesis to produce novel glycoforms or glycoform distributions of a recombinant glycoprotein can potentially lead to an improved therapeutic performance of the glycoprotein product. A mathematical model for the initial stages of this process, up to the first galactosylation of an oligosaccharide, was previously developed by Umana and Bailey (1997) (UB1997). Building on this work, an extended model is developed to include further galactosylation, fucosylation, extension of antennae by N‐acetyllactosamine repeats, and sialylation. This allows many more structural features to be predicted. A number of simplifying assumptions are also relaxed to incorporate more variables for the control of glycoforms. The full model generates 7565 oligosaccharide structures in a network of 22,871 reactions. Methods for solving the model for the complete product distribution and adjusting the parameters to match experimental data are also developed. A basal set of kinetic parameters for the enzyme‐catalyzed reactions acting on free oligosaccharide substrates is obtained from the previous model and existing literature. Enzyme activities are adjusted to match experimental glycoform distributions for Chinese Hamster Ovary (CHO). The model is then used to predict the effect of increasing expression of a target glycoprotein on the product glycoform distribution and evaluate appropriate metabolic engineering strategies to return the glycoform profile to its original distribution pattern. This model may find significant utility in the future to predict glycosylation patterns and direct glycoengineering projects to optimize glycoform distributions. © 2005 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>Biotechnology</subject><subject>Cells, Cultured - metabolism</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Engineering</subject><subject>Enzymes - metabolism</subject><subject>Enzymes - pharmacokinetics</subject><subject>Genetic recombination</subject><subject>glycoform</subject><subject>Glycosylation</subject><subject>Hexoses - chemistry</subject><subject>Hexoses - metabolism</subject><subject>mammalian cell culture</subject><subject>mathematical model</subject><subject>Mathematical models</subject><subject>metabolic engineering</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>N-linked glycosylation</subject><subject>oligosaccharides</subject><subject>Oligosaccharides - biosynthesis</subject><subject>Oligosaccharides - chemistry</subject><subject>Protein Transport</subject><subject>Proteins</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEUhYMoWqsL_4AMLgQXU2_ek6UW36VutIKbkMlkdGymo5MW7b832qogiJt7ufCdwz0HoR0MPQxADvNq2iMgGF9BHQxKpkAUrKIOAIiUckU20GYIT_GUmRDraAMLwqSUtIN6R0ltpo8ujsoan9RN4XzSlMkw9dVk7Irkwc9tE-Y-As1kC62Vxge3vdxddHt6ctM_TwfXZxf9o0FqWcZ56oTlRZExlVsLRlKFjRKiIEJyC9zkpSCFKZiFksqcUiupUPE1nBmAkhlFu2h_4fvcNi8zF6a6roJ13puJa2ZBiywjMQD8C2LFGHAmI7j3C3xqZu0khtAEUymoiKuLDhaQbZsQWlfq57aqTTvXGPRH1TpWrT-rjuzu0nCW1674IZfdRuBwAbxW3s3_dtLHFzdflulCUYWpe_tWmHashaSS67vhmR5djS4JuWe6T98BFm2UfA</recordid><startdate>20051220</startdate><enddate>20051220</enddate><creator>Krambeck, Frederick J.</creator><creator>Betenbaugh, Michael J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20051220</creationdate><title>A mathematical model of N-linked glycosylation</title><author>Krambeck, Frederick J. ; Betenbaugh, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4855-e6c5dd849bcc0a7391a966d2675c05abf62dad4c0f37b33c736978618a00f4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biotechnology</topic><topic>Cells, Cultured - metabolism</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Engineering</topic><topic>Enzymes - metabolism</topic><topic>Enzymes - pharmacokinetics</topic><topic>Genetic recombination</topic><topic>glycoform</topic><topic>Glycosylation</topic><topic>Hexoses - chemistry</topic><topic>Hexoses - metabolism</topic><topic>mammalian cell culture</topic><topic>mathematical model</topic><topic>Mathematical models</topic><topic>metabolic engineering</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>N-linked glycosylation</topic><topic>oligosaccharides</topic><topic>Oligosaccharides - biosynthesis</topic><topic>Oligosaccharides - chemistry</topic><topic>Protein Transport</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krambeck, Frederick J.</creatorcontrib><creatorcontrib>Betenbaugh, Michael J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krambeck, Frederick J.</au><au>Betenbaugh, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model of N-linked glycosylation</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2005-12-20</date><risdate>2005</risdate><volume>92</volume><issue>6</issue><spage>711</spage><epage>728</epage><pages>711-728</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Metabolic engineering of N‐linked oligosaccharide biosynthesis to produce novel glycoforms or glycoform distributions of a recombinant glycoprotein can potentially lead to an improved therapeutic performance of the glycoprotein product. A mathematical model for the initial stages of this process, up to the first galactosylation of an oligosaccharide, was previously developed by Umana and Bailey (1997) (UB1997). Building on this work, an extended model is developed to include further galactosylation, fucosylation, extension of antennae by N‐acetyllactosamine repeats, and sialylation. This allows many more structural features to be predicted. A number of simplifying assumptions are also relaxed to incorporate more variables for the control of glycoforms. The full model generates 7565 oligosaccharide structures in a network of 22,871 reactions. Methods for solving the model for the complete product distribution and adjusting the parameters to match experimental data are also developed. A basal set of kinetic parameters for the enzyme‐catalyzed reactions acting on free oligosaccharide substrates is obtained from the previous model and existing literature. Enzyme activities are adjusted to match experimental glycoform distributions for Chinese Hamster Ovary (CHO). The model is then used to predict the effect of increasing expression of a target glycoprotein on the product glycoform distribution and evaluate appropriate metabolic engineering strategies to return the glycoform profile to its original distribution pattern. This model may find significant utility in the future to predict glycosylation patterns and direct glycoengineering projects to optimize glycoform distributions. © 2005 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16247773</pmid><doi>10.1002/bit.20645</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2005-12, Vol.92 (6), p.711-728
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_68827770
source MEDLINE; Access via Wiley Online Library
subjects Animals
Biotechnology
Cells, Cultured - metabolism
CHO Cells
Cricetinae
Engineering
Enzymes - metabolism
Enzymes - pharmacokinetics
Genetic recombination
glycoform
Glycosylation
Hexoses - chemistry
Hexoses - metabolism
mammalian cell culture
mathematical model
Mathematical models
metabolic engineering
Metabolism
Models, Biological
N-linked glycosylation
oligosaccharides
Oligosaccharides - biosynthesis
Oligosaccharides - chemistry
Protein Transport
Proteins
title A mathematical model of N-linked glycosylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20of%20N-linked%20glycosylation&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Krambeck,%20Frederick%20J.&rft.date=2005-12-20&rft.volume=92&rft.issue=6&rft.spage=711&rft.epage=728&rft.pages=711-728&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20645&rft_dat=%3Cproquest_cross%3E68827770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213763621&rft_id=info:pmid/16247773&rfr_iscdi=true