Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications
The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2005-12, Vol.44 (45), p.7342-7372 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7372 |
---|---|
container_issue | 45 |
container_start_page | 7342 |
container_title | Angewandte Chemie International Edition |
container_volume | 44 |
creator | Walsh, Christopher T. Garneau-Tsodikova, Sylvie Gatto Jr, Gregory J. |
description | The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases, and 500 proteases. The major types of protein covalent modifications, such as phosphorylation, acetylation, glycosylation, methylation, and ubiquitylation, can be classified according to the type of amino acid side chain modified, the category of the modifying enzyme, and the extent of reversibility. Chemical events such as protein splicing, green fluorescent protein maturation, and proteasome autoactivations also represent posttranslational modifications. An understanding of the scope and pattern of the many posttranslational modifications in eukaryotic cells provides insight into the function and dynamics of proteome compositions.
A variety of covalent alterations to the side chains and backbone atoms of proteins expand the diversity of proteomes beyond the number predicted by natural genome sequences. The predominant posttranslational modifications are described with an emphasis on the mechanisms of formation and reversal. The picture shows ADP ribosylation of a modified histidine residue of elongation factor eEF‐2 catalyed by diphtheria toxin. |
doi_str_mv | 10.1002/anie.200501023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68819046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68819046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4473-14f565d451cf898f58fa79929c7e56bba4e2e9cde2a4510d0200084bdea7057e3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EgvJYGVEmthQ_4thhqwqUigJFFDFabnIjDGlc7BTov8dtKmBj8rV0vk_3HoSOCe4SjOmZrg10KcYcE0zZFuoQTknMhGDbYU4Yi4XkZA_te_8aeClxuov2SEpTIQXtoMexsw2YOhpb3zRO177SjbG1rqJbW5jS5OuvP48mLxD1X2BmfOOWkS2jddLOILowH-D8L3uIdkpdeTjavAfo6epy0r-OR_eDYb83ivMkESwmSclTXiSc5KXMZMllqUWW0SwXwNPpVCdAIcsLoDowuMDhTCyTaQFaYC6AHaDTtnfu7PsCfKPCcjlUla7BLrxKpSQZTtIAdlswd9Z7B6WaOzPTbqkIViuNaqVR_WgMgZNN82I6g-IX33gLQNYCn6aC5T91qnc3vPxbHrfZYBK-frLavalUMMHV891APfDJDR_cjtQN-wb2yY8N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68819046</pqid></control><display><type>article</type><title>Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><creator>Walsh, Christopher T. ; Garneau-Tsodikova, Sylvie ; Gatto Jr, Gregory J.</creator><creatorcontrib>Walsh, Christopher T. ; Garneau-Tsodikova, Sylvie ; Gatto Jr, Gregory J.</creatorcontrib><description>The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases, and 500 proteases. The major types of protein covalent modifications, such as phosphorylation, acetylation, glycosylation, methylation, and ubiquitylation, can be classified according to the type of amino acid side chain modified, the category of the modifying enzyme, and the extent of reversibility. Chemical events such as protein splicing, green fluorescent protein maturation, and proteasome autoactivations also represent posttranslational modifications. An understanding of the scope and pattern of the many posttranslational modifications in eukaryotic cells provides insight into the function and dynamics of proteome compositions.
A variety of covalent alterations to the side chains and backbone atoms of proteins expand the diversity of proteomes beyond the number predicted by natural genome sequences. The predominant posttranslational modifications are described with an emphasis on the mechanisms of formation and reversal. The picture shows ADP ribosylation of a modified histidine residue of elongation factor eEF‐2 catalyed by diphtheria toxin.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.200501023</identifier><identifier>PMID: 16267872</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>amino acids ; Animals ; DNA - chemistry ; enzymes ; Humans ; Molecular Structure ; Peptide Hydrolases - chemistry ; Peptide Hydrolases - metabolism ; Phosphoprotein Phosphatases - chemistry ; Phosphoprotein Phosphatases - metabolism ; Proteasome Endopeptidase Complex - chemistry ; Proteasome Endopeptidase Complex - metabolism ; Protein Kinases - chemistry ; Protein Kinases - metabolism ; protein modifications ; Protein Processing, Post-Translational ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism ; Proteome - chemistry ; Proteome - genetics ; Proteome - metabolism ; proteomics</subject><ispartof>Angewandte Chemie International Edition, 2005-12, Vol.44 (45), p.7342-7372</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4473-14f565d451cf898f58fa79929c7e56bba4e2e9cde2a4510d0200084bdea7057e3</citedby><cites>FETCH-LOGICAL-c4473-14f565d451cf898f58fa79929c7e56bba4e2e9cde2a4510d0200084bdea7057e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.200501023$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.200501023$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16267872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walsh, Christopher T.</creatorcontrib><creatorcontrib>Garneau-Tsodikova, Sylvie</creatorcontrib><creatorcontrib>Gatto Jr, Gregory J.</creatorcontrib><title>Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications</title><title>Angewandte Chemie International Edition</title><addtitle>Angewandte Chemie International Edition</addtitle><description>The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases, and 500 proteases. The major types of protein covalent modifications, such as phosphorylation, acetylation, glycosylation, methylation, and ubiquitylation, can be classified according to the type of amino acid side chain modified, the category of the modifying enzyme, and the extent of reversibility. Chemical events such as protein splicing, green fluorescent protein maturation, and proteasome autoactivations also represent posttranslational modifications. An understanding of the scope and pattern of the many posttranslational modifications in eukaryotic cells provides insight into the function and dynamics of proteome compositions.
A variety of covalent alterations to the side chains and backbone atoms of proteins expand the diversity of proteomes beyond the number predicted by natural genome sequences. The predominant posttranslational modifications are described with an emphasis on the mechanisms of formation and reversal. The picture shows ADP ribosylation of a modified histidine residue of elongation factor eEF‐2 catalyed by diphtheria toxin.</description><subject>amino acids</subject><subject>Animals</subject><subject>DNA - chemistry</subject><subject>enzymes</subject><subject>Humans</subject><subject>Molecular Structure</subject><subject>Peptide Hydrolases - chemistry</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Phosphoprotein Phosphatases - chemistry</subject><subject>Phosphoprotein Phosphatases - metabolism</subject><subject>Proteasome Endopeptidase Complex - chemistry</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - metabolism</subject><subject>protein modifications</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proteome - chemistry</subject><subject>Proteome - genetics</subject><subject>Proteome - metabolism</subject><subject>proteomics</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAURi0EgvJYGVEmthQ_4thhqwqUigJFFDFabnIjDGlc7BTov8dtKmBj8rV0vk_3HoSOCe4SjOmZrg10KcYcE0zZFuoQTknMhGDbYU4Yi4XkZA_te_8aeClxuov2SEpTIQXtoMexsw2YOhpb3zRO177SjbG1rqJbW5jS5OuvP48mLxD1X2BmfOOWkS2jddLOILowH-D8L3uIdkpdeTjavAfo6epy0r-OR_eDYb83ivMkESwmSclTXiSc5KXMZMllqUWW0SwXwNPpVCdAIcsLoDowuMDhTCyTaQFaYC6AHaDTtnfu7PsCfKPCcjlUla7BLrxKpSQZTtIAdlswd9Z7B6WaOzPTbqkIViuNaqVR_WgMgZNN82I6g-IX33gLQNYCn6aC5T91qnc3vPxbHrfZYBK-frLavalUMMHV891APfDJDR_cjtQN-wb2yY8N</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Walsh, Christopher T.</creator><creator>Garneau-Tsodikova, Sylvie</creator><creator>Gatto Jr, Gregory J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051201</creationdate><title>Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications</title><author>Walsh, Christopher T. ; Garneau-Tsodikova, Sylvie ; Gatto Jr, Gregory J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4473-14f565d451cf898f58fa79929c7e56bba4e2e9cde2a4510d0200084bdea7057e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>amino acids</topic><topic>Animals</topic><topic>DNA - chemistry</topic><topic>enzymes</topic><topic>Humans</topic><topic>Molecular Structure</topic><topic>Peptide Hydrolases - chemistry</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Phosphoprotein Phosphatases - chemistry</topic><topic>Phosphoprotein Phosphatases - metabolism</topic><topic>Proteasome Endopeptidase Complex - chemistry</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - metabolism</topic><topic>protein modifications</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proteome - chemistry</topic><topic>Proteome - genetics</topic><topic>Proteome - metabolism</topic><topic>proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsh, Christopher T.</creatorcontrib><creatorcontrib>Garneau-Tsodikova, Sylvie</creatorcontrib><creatorcontrib>Gatto Jr, Gregory J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsh, Christopher T.</au><au>Garneau-Tsodikova, Sylvie</au><au>Gatto Jr, Gregory J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angewandte Chemie International Edition</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>44</volume><issue>45</issue><spage>7342</spage><epage>7372</epage><pages>7342-7372</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases, and 500 proteases. The major types of protein covalent modifications, such as phosphorylation, acetylation, glycosylation, methylation, and ubiquitylation, can be classified according to the type of amino acid side chain modified, the category of the modifying enzyme, and the extent of reversibility. Chemical events such as protein splicing, green fluorescent protein maturation, and proteasome autoactivations also represent posttranslational modifications. An understanding of the scope and pattern of the many posttranslational modifications in eukaryotic cells provides insight into the function and dynamics of proteome compositions.
A variety of covalent alterations to the side chains and backbone atoms of proteins expand the diversity of proteomes beyond the number predicted by natural genome sequences. The predominant posttranslational modifications are described with an emphasis on the mechanisms of formation and reversal. The picture shows ADP ribosylation of a modified histidine residue of elongation factor eEF‐2 catalyed by diphtheria toxin.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>16267872</pmid><doi>10.1002/anie.200501023</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2005-12, Vol.44 (45), p.7342-7372 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_68819046 |
source | Access via Wiley Online Library; MEDLINE |
subjects | amino acids Animals DNA - chemistry enzymes Humans Molecular Structure Peptide Hydrolases - chemistry Peptide Hydrolases - metabolism Phosphoprotein Phosphatases - chemistry Phosphoprotein Phosphatases - metabolism Proteasome Endopeptidase Complex - chemistry Proteasome Endopeptidase Complex - metabolism Protein Kinases - chemistry Protein Kinases - metabolism protein modifications Protein Processing, Post-Translational Proteins - chemistry Proteins - genetics Proteins - metabolism Proteome - chemistry Proteome - genetics Proteome - metabolism proteomics |
title | Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Posttranslational%20Modifications:%20The%20Chemistry%20of%20Proteome%20Diversifications&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Walsh,%20Christopher%20T.&rft.date=2005-12-01&rft.volume=44&rft.issue=45&rft.spage=7342&rft.epage=7372&rft.pages=7342-7372&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.200501023&rft_dat=%3Cproquest_cross%3E68819046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68819046&rft_id=info:pmid/16267872&rfr_iscdi=true |