Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity
Nanoporous materials have attracted great technological interest during the past two decades, essentially due to their wide range of applications: they are used as catalysts, molecular sieves, separators and gas sensors as well as for electronic and electrochemical devices 1 , 2 , 3 , 4 , 5 . Most s...
Gespeichert in:
Veröffentlicht in: | Nature materials 2006-09, Vol.5 (9), p.713-717 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 717 |
---|---|
container_issue | 9 |
container_start_page | 713 |
container_title | Nature materials |
container_volume | 5 |
creator | Hu, Yong-Sheng Guo, Yu-Guo Sigle, Wilfried Hore, Sarmimala Balaya, Palani Maier, Joachim |
description | Nanoporous materials have attracted great technological interest during the past two decades, essentially due to their wide range of applications: they are used as catalysts, molecular sieves, separators and gas sensors as well as for electronic and electrochemical devices
1
,
2
,
3
,
4
,
5
. Most syntheses of nanoporous materials reported so far have focused on template-assisted bottom-up processes, including soft templating
6
,
7
,
8
,
9
,
10
(chelating agents, surfactants, block copolymers and so on) and hard templating
11
,
12
(porous alumina, carbon nanotubes and nanoporous materials) methods. Here, we exploit a mechanism implicitly occurring in lithium batteries at deep discharge
13
,
14
,
15
,
16
,
17
,
18
to develop it into a room-temperature template-free method of wide applicability in the synthesis of not only transition metals but also metal oxides with large surface area and pronounced nanoporosity associated with unprecedented properties. The power of this top-down method is demonstrated by the synthesis of nanoporous Pt and RuO
2
, both exhibiting superior performance: the Pt prepared shows outstanding properties when used as an electrocatalyst for methanol oxidation, and the RuO
2
, when used as a supercapacitor electrode material, exhibits a distinctly better performance than that previously reported for non-hydrated RuO
2
(refs
19
20
). |
doi_str_mv | 10.1038/nmat1709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68810656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68810656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d5f0f27e1a7e184e809402a6af7f3538aa14bf9a5695f80e843c52c77cad9d9a3</originalsourceid><addsrcrecordid>eNqFkctKBTEMhoso3sEnkOJCdHG0l2mnsxTxBoIbXQ-x03oqM-3YdpTz9lbOEUEXLkIS8uUP4UfogJIzSrg69wNkWpNmDW3TqpazSkqyvqopZWwL7aT0SgijQshNtEVlQySt2Dbqr3qjcwx6bganoce9y3MH2QWP08LnuUku4WCxBx_GEMOUcDlmooM-4Y8C4zSNpQ0Ra8jQL7LTGHxXuhG0y-7dYNAlubzYQxu2rJn9Vd5FT9dXj5e3s_uHm7vLi_uZ5jXPs05YYlltKJRQlVGkqQgDCba2XHAFQKtn24CQjbCKGFVxLZiuaw1d0zXAd9HxUneM4W0yKbeDS9r0PXhTHmilUpRIIf8FuWC8IoQW8OgX-Bqm6MsTLWOsFg3jqkAnS0jHkFI0th2jGyAuWkraL5_ab58KerjSm54H0_2AK2MKcLoEUhn5FxN_Dv4R-wTcw54z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222759238</pqid></control><display><type>article</type><title>Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Hu, Yong-Sheng ; Guo, Yu-Guo ; Sigle, Wilfried ; Hore, Sarmimala ; Balaya, Palani ; Maier, Joachim</creator><creatorcontrib>Hu, Yong-Sheng ; Guo, Yu-Guo ; Sigle, Wilfried ; Hore, Sarmimala ; Balaya, Palani ; Maier, Joachim</creatorcontrib><description>Nanoporous materials have attracted great technological interest during the past two decades, essentially due to their wide range of applications: they are used as catalysts, molecular sieves, separators and gas sensors as well as for electronic and electrochemical devices
1
,
2
,
3
,
4
,
5
. Most syntheses of nanoporous materials reported so far have focused on template-assisted bottom-up processes, including soft templating
6
,
7
,
8
,
9
,
10
(chelating agents, surfactants, block copolymers and so on) and hard templating
11
,
12
(porous alumina, carbon nanotubes and nanoporous materials) methods. Here, we exploit a mechanism implicitly occurring in lithium batteries at deep discharge
13
,
14
,
15
,
16
,
17
,
18
to develop it into a room-temperature template-free method of wide applicability in the synthesis of not only transition metals but also metal oxides with large surface area and pronounced nanoporosity associated with unprecedented properties. The power of this top-down method is demonstrated by the synthesis of nanoporous Pt and RuO
2
, both exhibiting superior performance: the Pt prepared shows outstanding properties when used as an electrocatalyst for methanol oxidation, and the RuO
2
, when used as a supercapacitor electrode material, exhibits a distinctly better performance than that previously reported for non-hydrated RuO
2
(refs
19
20
).</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1709</identifier><identifier>PMID: 16906142</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Catalysis ; Chelating agents ; Chemical synthesis ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Electrodes ; letter ; Lithium ; Materials Science ; Metals ; Methanol ; Nanotechnology ; Optical and Electronic Materials ; Oxidation ; Sensors ; Surface area ; Surfactants</subject><ispartof>Nature materials, 2006-09, Vol.5 (9), p.713-717</ispartof><rights>Springer Nature Limited 2006</rights><rights>Copyright Nature Publishing Group Sep 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d5f0f27e1a7e184e809402a6af7f3538aa14bf9a5695f80e843c52c77cad9d9a3</citedby><cites>FETCH-LOGICAL-c373t-d5f0f27e1a7e184e809402a6af7f3538aa14bf9a5695f80e843c52c77cad9d9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1709$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1709$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16906142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yong-Sheng</creatorcontrib><creatorcontrib>Guo, Yu-Guo</creatorcontrib><creatorcontrib>Sigle, Wilfried</creatorcontrib><creatorcontrib>Hore, Sarmimala</creatorcontrib><creatorcontrib>Balaya, Palani</creatorcontrib><creatorcontrib>Maier, Joachim</creatorcontrib><title>Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Nanoporous materials have attracted great technological interest during the past two decades, essentially due to their wide range of applications: they are used as catalysts, molecular sieves, separators and gas sensors as well as for electronic and electrochemical devices
1
,
2
,
3
,
4
,
5
. Most syntheses of nanoporous materials reported so far have focused on template-assisted bottom-up processes, including soft templating
6
,
7
,
8
,
9
,
10
(chelating agents, surfactants, block copolymers and so on) and hard templating
11
,
12
(porous alumina, carbon nanotubes and nanoporous materials) methods. Here, we exploit a mechanism implicitly occurring in lithium batteries at deep discharge
13
,
14
,
15
,
16
,
17
,
18
to develop it into a room-temperature template-free method of wide applicability in the synthesis of not only transition metals but also metal oxides with large surface area and pronounced nanoporosity associated with unprecedented properties. The power of this top-down method is demonstrated by the synthesis of nanoporous Pt and RuO
2
, both exhibiting superior performance: the Pt prepared shows outstanding properties when used as an electrocatalyst for methanol oxidation, and the RuO
2
, when used as a supercapacitor electrode material, exhibits a distinctly better performance than that previously reported for non-hydrated RuO
2
(refs
19
20
).</description><subject>Biomaterials</subject><subject>Catalysis</subject><subject>Chelating agents</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>letter</subject><subject>Lithium</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Methanol</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Sensors</subject><subject>Surface area</subject><subject>Surfactants</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkctKBTEMhoso3sEnkOJCdHG0l2mnsxTxBoIbXQ-x03oqM-3YdpTz9lbOEUEXLkIS8uUP4UfogJIzSrg69wNkWpNmDW3TqpazSkqyvqopZWwL7aT0SgijQshNtEVlQySt2Dbqr3qjcwx6bganoce9y3MH2QWP08LnuUku4WCxBx_GEMOUcDlmooM-4Y8C4zSNpQ0Ra8jQL7LTGHxXuhG0y-7dYNAlubzYQxu2rJn9Vd5FT9dXj5e3s_uHm7vLi_uZ5jXPs05YYlltKJRQlVGkqQgDCba2XHAFQKtn24CQjbCKGFVxLZiuaw1d0zXAd9HxUneM4W0yKbeDS9r0PXhTHmilUpRIIf8FuWC8IoQW8OgX-Bqm6MsTLWOsFg3jqkAnS0jHkFI0th2jGyAuWkraL5_ab58KerjSm54H0_2AK2MKcLoEUhn5FxN_Dv4R-wTcw54z</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Hu, Yong-Sheng</creator><creator>Guo, Yu-Guo</creator><creator>Sigle, Wilfried</creator><creator>Hore, Sarmimala</creator><creator>Balaya, Palani</creator><creator>Maier, Joachim</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20060901</creationdate><title>Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity</title><author>Hu, Yong-Sheng ; Guo, Yu-Guo ; Sigle, Wilfried ; Hore, Sarmimala ; Balaya, Palani ; Maier, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d5f0f27e1a7e184e809402a6af7f3538aa14bf9a5695f80e843c52c77cad9d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biomaterials</topic><topic>Catalysis</topic><topic>Chelating agents</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>letter</topic><topic>Lithium</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Methanol</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Sensors</topic><topic>Surface area</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yong-Sheng</creatorcontrib><creatorcontrib>Guo, Yu-Guo</creatorcontrib><creatorcontrib>Sigle, Wilfried</creatorcontrib><creatorcontrib>Hore, Sarmimala</creatorcontrib><creatorcontrib>Balaya, Palani</creatorcontrib><creatorcontrib>Maier, Joachim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yong-Sheng</au><au>Guo, Yu-Guo</au><au>Sigle, Wilfried</au><au>Hore, Sarmimala</au><au>Balaya, Palani</au><au>Maier, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>5</volume><issue>9</issue><spage>713</spage><epage>717</epage><pages>713-717</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Nanoporous materials have attracted great technological interest during the past two decades, essentially due to their wide range of applications: they are used as catalysts, molecular sieves, separators and gas sensors as well as for electronic and electrochemical devices
1
,
2
,
3
,
4
,
5
. Most syntheses of nanoporous materials reported so far have focused on template-assisted bottom-up processes, including soft templating
6
,
7
,
8
,
9
,
10
(chelating agents, surfactants, block copolymers and so on) and hard templating
11
,
12
(porous alumina, carbon nanotubes and nanoporous materials) methods. Here, we exploit a mechanism implicitly occurring in lithium batteries at deep discharge
13
,
14
,
15
,
16
,
17
,
18
to develop it into a room-temperature template-free method of wide applicability in the synthesis of not only transition metals but also metal oxides with large surface area and pronounced nanoporosity associated with unprecedented properties. The power of this top-down method is demonstrated by the synthesis of nanoporous Pt and RuO
2
, both exhibiting superior performance: the Pt prepared shows outstanding properties when used as an electrocatalyst for methanol oxidation, and the RuO
2
, when used as a supercapacitor electrode material, exhibits a distinctly better performance than that previously reported for non-hydrated RuO
2
(refs
19
20
).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16906142</pmid><doi>10.1038/nmat1709</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2006-09, Vol.5 (9), p.713-717 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_68810656 |
source | SpringerLink Journals; Nature Journals Online |
subjects | Biomaterials Catalysis Chelating agents Chemical synthesis Chemistry and Materials Science Condensed Matter Physics Electrochemistry Electrodes letter Lithium Materials Science Metals Methanol Nanotechnology Optical and Electronic Materials Oxidation Sensors Surface area Surfactants |
title | Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20lithiation%20synthesis%20of%20nanoporous%20materials%20with%20superior%20catalytic%20and%20capacitive%20activity&rft.jtitle=Nature%20materials&rft.au=Hu,%20Yong-Sheng&rft.date=2006-09-01&rft.volume=5&rft.issue=9&rft.spage=713&rft.epage=717&rft.pages=713-717&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1709&rft_dat=%3Cproquest_cross%3E68810656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222759238&rft_id=info:pmid/16906142&rfr_iscdi=true |