Force production by disassembling microtubules
Microtubules (MTs) are important components of the eukaryotic cytoskeleton: they contribute to cell shape and movement, as well as to the motions of organelles including mitotic chromosomes. MTs bind motor enzymes that drive many such movements, but MT dynamics can also contribute to organelle motil...
Gespeichert in:
Veröffentlicht in: | Nature 2005-11, Vol.438 (7066), p.384-388 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 7066 |
container_start_page | 384 |
container_title | Nature |
container_volume | 438 |
creator | Ataullakhanov, Fazly I McIntosh, J. Richard Grishchuk, Ekaterina L Molodtsov, Maxim I |
description | Microtubules (MTs) are important components of the eukaryotic cytoskeleton: they contribute to cell shape and movement, as well as to the motions of organelles including mitotic chromosomes. MTs bind motor enzymes that drive many such movements, but MT dynamics can also contribute to organelle motility. Each MT polymer is a store of chemical energy that can be used to do mechanical work, but how this energy is converted to motility remains unknown. Here we show, by conjugating glass microbeads to tubulin polymers through strong inert linkages, such as biotin-avidin, that depolymerizing MTs exert a brief tug on the beads, as measured with laser tweezers. Analysis of these interactions with a molecular-mechanical model of MT structure and force production shows that a single depolymerizing MT can generate about ten times the force that is developed by a motor enzyme; thus, this mechanism might be the primary driving force for chromosome motion. Because even the simple coupler used here slows MT disassembly, physiological couplers may modulate MT dynamics in vivo. |
doi_str_mv | 10.1038/nature04132 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68810602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185466584</galeid><sourcerecordid>A185466584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-210a031cdbf44105508621b10bbd5417aa7f6cb93e72916cfdf934e69c64a49d3</originalsourceid><addsrcrecordid>eNqF0s9rFDEUB_Agit1WT95l7UEQmfW9_JrMcVlsLRQFrXgMSSazpMyPbTID9r83ZRe7Kyslh0D45MtL3iPkDcICgalPvRmn6IEjo8_IDHkpCy5V-ZzMAKgqQDF5Qk5TugUAgSV_SU5Q0ooyFDOyuBii8_NNHOrJjWHo5_Z-XodkUvKdbUO_nnfBxWGc7NT69Iq8aEyb_OvdfkZ-Xny-WX0prr9dXq2W14UTpRwLimCAoattwzmCEKAkRYtgbS04lsaUjXS2Yr6kFUrX1E3FuJeVk9zwqmZn5P02Nxd2N_k06i4k59vW9H6YkpZKIUigT0Kqch1I8UmYPwYlMsjw_B94O0yxz6_VFLiQKPAhrdiitWm9Dn0zjNG4te99NO3Q-ybk4yUqwaUUij-GHni3CXd6Hy2OoLxqn3twNPXDwYVsRv97XJspJX314_uh_fh_u7z5tfp6VOfWpxR9ozcxdCbeawT9MHV6b-qyfrv7ssl2vn60uzHL4N0WbG_9BfshfwDbMtk5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204561511</pqid></control><display><type>article</type><title>Force production by disassembling microtubules</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Ataullakhanov, Fazly I ; McIntosh, J. Richard ; Grishchuk, Ekaterina L ; Molodtsov, Maxim I</creator><creatorcontrib>Ataullakhanov, Fazly I ; McIntosh, J. Richard ; Grishchuk, Ekaterina L ; Molodtsov, Maxim I</creatorcontrib><description>Microtubules (MTs) are important components of the eukaryotic cytoskeleton: they contribute to cell shape and movement, as well as to the motions of organelles including mitotic chromosomes. MTs bind motor enzymes that drive many such movements, but MT dynamics can also contribute to organelle motility. Each MT polymer is a store of chemical energy that can be used to do mechanical work, but how this energy is converted to motility remains unknown. Here we show, by conjugating glass microbeads to tubulin polymers through strong inert linkages, such as biotin-avidin, that depolymerizing MTs exert a brief tug on the beads, as measured with laser tweezers. Analysis of these interactions with a molecular-mechanical model of MT structure and force production shows that a single depolymerizing MT can generate about ten times the force that is developed by a motor enzyme; thus, this mechanism might be the primary driving force for chromosome motion. Because even the simple coupler used here slows MT disassembly, physiological couplers may modulate MT dynamics in vivo.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature04132</identifier><identifier>PMID: 16292315</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Animals ; Biomechanical Phenomena ; Biopolymers - chemistry ; Biopolymers - metabolism ; Biotin ; Cattle ; Cellular biology ; Chromosomes ; Glass ; Microspheres ; Microtubules - chemistry ; Microtubules - metabolism ; Models, Biological ; Polymers ; Tetrahymena - chemistry ; Tetrahymena - metabolism ; Tubulin - chemistry ; Tubulin - metabolism</subject><ispartof>Nature, 2005-11, Vol.438 (7066), p.384-388</ispartof><rights>COPYRIGHT 2005 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 17, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-210a031cdbf44105508621b10bbd5417aa7f6cb93e72916cfdf934e69c64a49d3</citedby><cites>FETCH-LOGICAL-c576t-210a031cdbf44105508621b10bbd5417aa7f6cb93e72916cfdf934e69c64a49d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16292315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ataullakhanov, Fazly I</creatorcontrib><creatorcontrib>McIntosh, J. Richard</creatorcontrib><creatorcontrib>Grishchuk, Ekaterina L</creatorcontrib><creatorcontrib>Molodtsov, Maxim I</creatorcontrib><title>Force production by disassembling microtubules</title><title>Nature</title><addtitle>Nature</addtitle><description>Microtubules (MTs) are important components of the eukaryotic cytoskeleton: they contribute to cell shape and movement, as well as to the motions of organelles including mitotic chromosomes. MTs bind motor enzymes that drive many such movements, but MT dynamics can also contribute to organelle motility. Each MT polymer is a store of chemical energy that can be used to do mechanical work, but how this energy is converted to motility remains unknown. Here we show, by conjugating glass microbeads to tubulin polymers through strong inert linkages, such as biotin-avidin, that depolymerizing MTs exert a brief tug on the beads, as measured with laser tweezers. Analysis of these interactions with a molecular-mechanical model of MT structure and force production shows that a single depolymerizing MT can generate about ten times the force that is developed by a motor enzyme; thus, this mechanism might be the primary driving force for chromosome motion. Because even the simple coupler used here slows MT disassembly, physiological couplers may modulate MT dynamics in vivo.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Biopolymers - chemistry</subject><subject>Biopolymers - metabolism</subject><subject>Biotin</subject><subject>Cattle</subject><subject>Cellular biology</subject><subject>Chromosomes</subject><subject>Glass</subject><subject>Microspheres</subject><subject>Microtubules - chemistry</subject><subject>Microtubules - metabolism</subject><subject>Models, Biological</subject><subject>Polymers</subject><subject>Tetrahymena - chemistry</subject><subject>Tetrahymena - metabolism</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s9rFDEUB_Agit1WT95l7UEQmfW9_JrMcVlsLRQFrXgMSSazpMyPbTID9r83ZRe7Kyslh0D45MtL3iPkDcICgalPvRmn6IEjo8_IDHkpCy5V-ZzMAKgqQDF5Qk5TugUAgSV_SU5Q0ooyFDOyuBii8_NNHOrJjWHo5_Z-XodkUvKdbUO_nnfBxWGc7NT69Iq8aEyb_OvdfkZ-Xny-WX0prr9dXq2W14UTpRwLimCAoattwzmCEKAkRYtgbS04lsaUjXS2Yr6kFUrX1E3FuJeVk9zwqmZn5P02Nxd2N_k06i4k59vW9H6YkpZKIUigT0Kqch1I8UmYPwYlMsjw_B94O0yxz6_VFLiQKPAhrdiitWm9Dn0zjNG4te99NO3Q-ybk4yUqwaUUij-GHni3CXd6Hy2OoLxqn3twNPXDwYVsRv97XJspJX314_uh_fh_u7z5tfp6VOfWpxR9ozcxdCbeawT9MHV6b-qyfrv7ssl2vn60uzHL4N0WbG_9BfshfwDbMtk5</recordid><startdate>20051117</startdate><enddate>20051117</enddate><creator>Ataullakhanov, Fazly I</creator><creator>McIntosh, J. Richard</creator><creator>Grishchuk, Ekaterina L</creator><creator>Molodtsov, Maxim I</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20051117</creationdate><title>Force production by disassembling microtubules</title><author>Ataullakhanov, Fazly I ; McIntosh, J. Richard ; Grishchuk, Ekaterina L ; Molodtsov, Maxim I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-210a031cdbf44105508621b10bbd5417aa7f6cb93e72916cfdf934e69c64a49d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Biopolymers - chemistry</topic><topic>Biopolymers - metabolism</topic><topic>Biotin</topic><topic>Cattle</topic><topic>Cellular biology</topic><topic>Chromosomes</topic><topic>Glass</topic><topic>Microspheres</topic><topic>Microtubules - chemistry</topic><topic>Microtubules - metabolism</topic><topic>Models, Biological</topic><topic>Polymers</topic><topic>Tetrahymena - chemistry</topic><topic>Tetrahymena - metabolism</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ataullakhanov, Fazly I</creatorcontrib><creatorcontrib>McIntosh, J. Richard</creatorcontrib><creatorcontrib>Grishchuk, Ekaterina L</creatorcontrib><creatorcontrib>Molodtsov, Maxim I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ataullakhanov, Fazly I</au><au>McIntosh, J. Richard</au><au>Grishchuk, Ekaterina L</au><au>Molodtsov, Maxim I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Force production by disassembling microtubules</atitle><jtitle>Nature</jtitle><addtitle>Nature</addtitle><date>2005-11-17</date><risdate>2005</risdate><volume>438</volume><issue>7066</issue><spage>384</spage><epage>388</epage><pages>384-388</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Microtubules (MTs) are important components of the eukaryotic cytoskeleton: they contribute to cell shape and movement, as well as to the motions of organelles including mitotic chromosomes. MTs bind motor enzymes that drive many such movements, but MT dynamics can also contribute to organelle motility. Each MT polymer is a store of chemical energy that can be used to do mechanical work, but how this energy is converted to motility remains unknown. Here we show, by conjugating glass microbeads to tubulin polymers through strong inert linkages, such as biotin-avidin, that depolymerizing MTs exert a brief tug on the beads, as measured with laser tweezers. Analysis of these interactions with a molecular-mechanical model of MT structure and force production shows that a single depolymerizing MT can generate about ten times the force that is developed by a motor enzyme; thus, this mechanism might be the primary driving force for chromosome motion. Because even the simple coupler used here slows MT disassembly, physiological couplers may modulate MT dynamics in vivo.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>16292315</pmid><doi>10.1038/nature04132</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2005-11, Vol.438 (7066), p.384-388 |
issn | 0028-0836 1476-4687 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_68810602 |
source | MEDLINE; Nature Journals Online; Alma/SFX Local Collection |
subjects | Animals Biomechanical Phenomena Biopolymers - chemistry Biopolymers - metabolism Biotin Cattle Cellular biology Chromosomes Glass Microspheres Microtubules - chemistry Microtubules - metabolism Models, Biological Polymers Tetrahymena - chemistry Tetrahymena - metabolism Tubulin - chemistry Tubulin - metabolism |
title | Force production by disassembling microtubules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Force%20production%20by%20disassembling%20microtubules&rft.jtitle=Nature&rft.au=Ataullakhanov,%20Fazly%20I&rft.date=2005-11-17&rft.volume=438&rft.issue=7066&rft.spage=384&rft.epage=388&rft.pages=384-388&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature04132&rft_dat=%3Cgale_proqu%3EA185466584%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204561511&rft_id=info:pmid/16292315&rft_galeid=A185466584&rfr_iscdi=true |