Inactivation of CD4+CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load

Mycobacterium tuberculosis uses numerous mechanisms to avoid elimination by the infected host. In this study, we investigated the possibility whether, similar to other pathogens, M. tuberculosis exploits natural CD4+CD25+ T‐regulatory cells (Treg) to suppress the effector function of responding host...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunology and cell biology 2006-10, Vol.84 (5), p.467-474
Hauptverfasser: Quinn, Kylie M, McHugh, Rebecca S, Rich, Fenella J, Goldsack, Lisa M, Lisle, Geoffrey W, Buddle, Bryce M, Delahunt, Brett, Kirman, Joanna R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 5
container_start_page 467
container_title Immunology and cell biology
container_volume 84
creator Quinn, Kylie M
McHugh, Rebecca S
Rich, Fenella J
Goldsack, Lisa M
Lisle, Geoffrey W
Buddle, Bryce M
Delahunt, Brett
Kirman, Joanna R
description Mycobacterium tuberculosis uses numerous mechanisms to avoid elimination by the infected host. In this study, we investigated the possibility whether, similar to other pathogens, M. tuberculosis exploits natural CD4+CD25+ T‐regulatory cells (Treg) to suppress the effector function of responding host lymphocytes, thus enhancing its survival. During a Mycobacterium bovis bacille calmette guerin (BCG) pulmonary infection, we observed a 2.8‐fold increase in forkhead box P3 (Foxp3+) CD25+ Treg in the lung. To inactivate the Treg in vivo, an mAb was given against CD25 (PC61) 3 days before a pulmonary infection with BCG or M. tuberculosis. Following PC61 treatment, we observed significantly decreased CD25 expression on CD4+ T lymphocytes for at least 23 days in the blood, spleen and lung when compared with the control mice. To determine whether Treg inactivation affected the protective antimycobacterial immune response, we measured cytokine production by flow cytometry. We observed small, but significant increases in the percentages of both IFN‐γ‐producing and IL‐2‐producing CD4+ cells from the spleen and the IL‐2‐producing CD4+ cells from the lungs of PC61‐treated BCG‐infected mice compared with the infected control mice. Despite this, there was neither a difference between the lung bacterial burdens of PC61‐treated mice and control mice, measured until day 44 postinfection, nor was there an effect on infection‐induced lung pathology. Together, these data imply that the absence of natural Treg early after infection results in a small increase in cytokine production, but this does not alter the course of either M. tuberculosis or BCG infections. This contrasts with the important role that natural Treg play in the pathogenesis of many other intracellular infectious organisms.
doi_str_mv 10.1111/j.1440-1711.2006.01460.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68806072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68806072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-b8c1733fb433a677e4f722908710a501b1a87edc49bae83a22fb9775cf5d5e873</originalsourceid><addsrcrecordid>eNqNkd-O1CAUxonRuOPqKxgSE282rVAo0Du1659J1nizXhNKT0fGDozQ6vYxfGPpzkQTr-SGhO_7zjmcH0KYkpLm82pfUs5JQSWlZUWIKAnlgpR3D9Dmj_AQbYiiqmgEpxfoSUp7QoisFHuMLqhQomk42aBfW2_s5H6YyQWPw4Dba37VXlf1FY6wm0czhbjgW2xhHBPu5-j8DoOJ44IPiw1dDkN0ZsTOD2DvizhvI5gECdtlCt-cB3yMoZ9PajdPuA9Z9GHCZlhD-Gimr2EHHo_B9E_Ro8GMCZ6d70v05f272_ZjcfP5w7Z9c1NYViledMpSydjQccaMkBL4IKuqIUpSYmpCO2qUhN7ypjOgmKmqoWukrO1Q9zUoyS7Ry1PdPNz3GdKkDy6t3zQewpy0UIqIvLBsfPGPcR_m6PNsmkolBK3z8rNLnVw2hpQiDPoY3cHERVOiV2h6r1c2emWjV2j6Hpq-y9Hn5wZzd4D-b_BMKRtenww_3QjLfxfW20_t2_VBcPYbl6-nCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786615146</pqid></control><display><type>article</type><title>Inactivation of CD4+CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Quinn, Kylie M ; McHugh, Rebecca S ; Rich, Fenella J ; Goldsack, Lisa M ; Lisle, Geoffrey W ; Buddle, Bryce M ; Delahunt, Brett ; Kirman, Joanna R</creator><creatorcontrib>Quinn, Kylie M ; McHugh, Rebecca S ; Rich, Fenella J ; Goldsack, Lisa M ; Lisle, Geoffrey W ; Buddle, Bryce M ; Delahunt, Brett ; Kirman, Joanna R</creatorcontrib><description>Mycobacterium tuberculosis uses numerous mechanisms to avoid elimination by the infected host. In this study, we investigated the possibility whether, similar to other pathogens, M. tuberculosis exploits natural CD4+CD25+ T‐regulatory cells (Treg) to suppress the effector function of responding host lymphocytes, thus enhancing its survival. During a Mycobacterium bovis bacille calmette guerin (BCG) pulmonary infection, we observed a 2.8‐fold increase in forkhead box P3 (Foxp3+) CD25+ Treg in the lung. To inactivate the Treg in vivo, an mAb was given against CD25 (PC61) 3 days before a pulmonary infection with BCG or M. tuberculosis. Following PC61 treatment, we observed significantly decreased CD25 expression on CD4+ T lymphocytes for at least 23 days in the blood, spleen and lung when compared with the control mice. To determine whether Treg inactivation affected the protective antimycobacterial immune response, we measured cytokine production by flow cytometry. We observed small, but significant increases in the percentages of both IFN‐γ‐producing and IL‐2‐producing CD4+ cells from the spleen and the IL‐2‐producing CD4+ cells from the lungs of PC61‐treated BCG‐infected mice compared with the infected control mice. Despite this, there was neither a difference between the lung bacterial burdens of PC61‐treated mice and control mice, measured until day 44 postinfection, nor was there an effect on infection‐induced lung pathology. Together, these data imply that the absence of natural Treg early after infection results in a small increase in cytokine production, but this does not alter the course of either M. tuberculosis or BCG infections. This contrasts with the important role that natural Treg play in the pathogenesis of many other intracellular infectious organisms.</description><identifier>ISSN: 0818-9641</identifier><identifier>EISSN: 1440-1711</identifier><identifier>DOI: 10.1111/j.1440-1711.2006.01460.x</identifier><identifier>PMID: 16869940</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>Acute-Phase Reaction - immunology ; Animals ; Antibodies, Monoclonal - immunology ; Female ; Forkhead Transcription Factors - metabolism ; Interferon-gamma - biosynthesis ; Interleukin-2 - biosynthesis ; Mice ; Mice, Inbred C57BL ; mycobacterium ; Mycobacterium bovis - growth &amp; development ; Mycobacterium bovis - immunology ; Mycobacterium tuberculosis - growth &amp; development ; Mycobacterium tuberculosis - immunology ; Receptors, Interleukin-2 - immunology ; Receptors, Interleukin-2 - metabolism ; regulatory T cell ; T-Lymphocytes, Regulatory - immunology ; tuberculosis ; Tuberculosis, Pulmonary - immunology ; Tuberculosis, Pulmonary - microbiology ; Tuberculosis, Pulmonary - pathology</subject><ispartof>Immunology and cell biology, 2006-10, Vol.84 (5), p.467-474</ispartof><rights>2006 Australasian Society for Immunology Inc.</rights><rights>Copyright Nature Publishing Group Oct 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-b8c1733fb433a677e4f722908710a501b1a87edc49bae83a22fb9775cf5d5e873</citedby><cites>FETCH-LOGICAL-c3284-b8c1733fb433a677e4f722908710a501b1a87edc49bae83a22fb9775cf5d5e873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1440-1711.2006.01460.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1440-1711.2006.01460.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16869940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quinn, Kylie M</creatorcontrib><creatorcontrib>McHugh, Rebecca S</creatorcontrib><creatorcontrib>Rich, Fenella J</creatorcontrib><creatorcontrib>Goldsack, Lisa M</creatorcontrib><creatorcontrib>Lisle, Geoffrey W</creatorcontrib><creatorcontrib>Buddle, Bryce M</creatorcontrib><creatorcontrib>Delahunt, Brett</creatorcontrib><creatorcontrib>Kirman, Joanna R</creatorcontrib><title>Inactivation of CD4+CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load</title><title>Immunology and cell biology</title><addtitle>Immunol Cell Biol</addtitle><description>Mycobacterium tuberculosis uses numerous mechanisms to avoid elimination by the infected host. In this study, we investigated the possibility whether, similar to other pathogens, M. tuberculosis exploits natural CD4+CD25+ T‐regulatory cells (Treg) to suppress the effector function of responding host lymphocytes, thus enhancing its survival. During a Mycobacterium bovis bacille calmette guerin (BCG) pulmonary infection, we observed a 2.8‐fold increase in forkhead box P3 (Foxp3+) CD25+ Treg in the lung. To inactivate the Treg in vivo, an mAb was given against CD25 (PC61) 3 days before a pulmonary infection with BCG or M. tuberculosis. Following PC61 treatment, we observed significantly decreased CD25 expression on CD4+ T lymphocytes for at least 23 days in the blood, spleen and lung when compared with the control mice. To determine whether Treg inactivation affected the protective antimycobacterial immune response, we measured cytokine production by flow cytometry. We observed small, but significant increases in the percentages of both IFN‐γ‐producing and IL‐2‐producing CD4+ cells from the spleen and the IL‐2‐producing CD4+ cells from the lungs of PC61‐treated BCG‐infected mice compared with the infected control mice. Despite this, there was neither a difference between the lung bacterial burdens of PC61‐treated mice and control mice, measured until day 44 postinfection, nor was there an effect on infection‐induced lung pathology. Together, these data imply that the absence of natural Treg early after infection results in a small increase in cytokine production, but this does not alter the course of either M. tuberculosis or BCG infections. This contrasts with the important role that natural Treg play in the pathogenesis of many other intracellular infectious organisms.</description><subject>Acute-Phase Reaction - immunology</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Female</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Interferon-gamma - biosynthesis</subject><subject>Interleukin-2 - biosynthesis</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mycobacterium</subject><subject>Mycobacterium bovis - growth &amp; development</subject><subject>Mycobacterium bovis - immunology</subject><subject>Mycobacterium tuberculosis - growth &amp; development</subject><subject>Mycobacterium tuberculosis - immunology</subject><subject>Receptors, Interleukin-2 - immunology</subject><subject>Receptors, Interleukin-2 - metabolism</subject><subject>regulatory T cell</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>tuberculosis</subject><subject>Tuberculosis, Pulmonary - immunology</subject><subject>Tuberculosis, Pulmonary - microbiology</subject><subject>Tuberculosis, Pulmonary - pathology</subject><issn>0818-9641</issn><issn>1440-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkd-O1CAUxonRuOPqKxgSE282rVAo0Du1659J1nizXhNKT0fGDozQ6vYxfGPpzkQTr-SGhO_7zjmcH0KYkpLm82pfUs5JQSWlZUWIKAnlgpR3D9Dmj_AQbYiiqmgEpxfoSUp7QoisFHuMLqhQomk42aBfW2_s5H6YyQWPw4Dba37VXlf1FY6wm0czhbjgW2xhHBPu5-j8DoOJ44IPiw1dDkN0ZsTOD2DvizhvI5gECdtlCt-cB3yMoZ9PajdPuA9Z9GHCZlhD-Gimr2EHHo_B9E_Ro8GMCZ6d70v05f272_ZjcfP5w7Z9c1NYViledMpSydjQccaMkBL4IKuqIUpSYmpCO2qUhN7ypjOgmKmqoWukrO1Q9zUoyS7Ry1PdPNz3GdKkDy6t3zQewpy0UIqIvLBsfPGPcR_m6PNsmkolBK3z8rNLnVw2hpQiDPoY3cHERVOiV2h6r1c2emWjV2j6Hpq-y9Hn5wZzd4D-b_BMKRtenww_3QjLfxfW20_t2_VBcPYbl6-nCg</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Quinn, Kylie M</creator><creator>McHugh, Rebecca S</creator><creator>Rich, Fenella J</creator><creator>Goldsack, Lisa M</creator><creator>Lisle, Geoffrey W</creator><creator>Buddle, Bryce M</creator><creator>Delahunt, Brett</creator><creator>Kirman, Joanna R</creator><general>Nature Publishing Group</general><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>200610</creationdate><title>Inactivation of CD4+CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load</title><author>Quinn, Kylie M ; McHugh, Rebecca S ; Rich, Fenella J ; Goldsack, Lisa M ; Lisle, Geoffrey W ; Buddle, Bryce M ; Delahunt, Brett ; Kirman, Joanna R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-b8c1733fb433a677e4f722908710a501b1a87edc49bae83a22fb9775cf5d5e873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acute-Phase Reaction - immunology</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Female</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Interferon-gamma - biosynthesis</topic><topic>Interleukin-2 - biosynthesis</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mycobacterium</topic><topic>Mycobacterium bovis - growth &amp; development</topic><topic>Mycobacterium bovis - immunology</topic><topic>Mycobacterium tuberculosis - growth &amp; development</topic><topic>Mycobacterium tuberculosis - immunology</topic><topic>Receptors, Interleukin-2 - immunology</topic><topic>Receptors, Interleukin-2 - metabolism</topic><topic>regulatory T cell</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>tuberculosis</topic><topic>Tuberculosis, Pulmonary - immunology</topic><topic>Tuberculosis, Pulmonary - microbiology</topic><topic>Tuberculosis, Pulmonary - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quinn, Kylie M</creatorcontrib><creatorcontrib>McHugh, Rebecca S</creatorcontrib><creatorcontrib>Rich, Fenella J</creatorcontrib><creatorcontrib>Goldsack, Lisa M</creatorcontrib><creatorcontrib>Lisle, Geoffrey W</creatorcontrib><creatorcontrib>Buddle, Bryce M</creatorcontrib><creatorcontrib>Delahunt, Brett</creatorcontrib><creatorcontrib>Kirman, Joanna R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Immunology and cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quinn, Kylie M</au><au>McHugh, Rebecca S</au><au>Rich, Fenella J</au><au>Goldsack, Lisa M</au><au>Lisle, Geoffrey W</au><au>Buddle, Bryce M</au><au>Delahunt, Brett</au><au>Kirman, Joanna R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inactivation of CD4+CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load</atitle><jtitle>Immunology and cell biology</jtitle><addtitle>Immunol Cell Biol</addtitle><date>2006-10</date><risdate>2006</risdate><volume>84</volume><issue>5</issue><spage>467</spage><epage>474</epage><pages>467-474</pages><issn>0818-9641</issn><eissn>1440-1711</eissn><abstract>Mycobacterium tuberculosis uses numerous mechanisms to avoid elimination by the infected host. In this study, we investigated the possibility whether, similar to other pathogens, M. tuberculosis exploits natural CD4+CD25+ T‐regulatory cells (Treg) to suppress the effector function of responding host lymphocytes, thus enhancing its survival. During a Mycobacterium bovis bacille calmette guerin (BCG) pulmonary infection, we observed a 2.8‐fold increase in forkhead box P3 (Foxp3+) CD25+ Treg in the lung. To inactivate the Treg in vivo, an mAb was given against CD25 (PC61) 3 days before a pulmonary infection with BCG or M. tuberculosis. Following PC61 treatment, we observed significantly decreased CD25 expression on CD4+ T lymphocytes for at least 23 days in the blood, spleen and lung when compared with the control mice. To determine whether Treg inactivation affected the protective antimycobacterial immune response, we measured cytokine production by flow cytometry. We observed small, but significant increases in the percentages of both IFN‐γ‐producing and IL‐2‐producing CD4+ cells from the spleen and the IL‐2‐producing CD4+ cells from the lungs of PC61‐treated BCG‐infected mice compared with the infected control mice. Despite this, there was neither a difference between the lung bacterial burdens of PC61‐treated mice and control mice, measured until day 44 postinfection, nor was there an effect on infection‐induced lung pathology. Together, these data imply that the absence of natural Treg early after infection results in a small increase in cytokine production, but this does not alter the course of either M. tuberculosis or BCG infections. This contrasts with the important role that natural Treg play in the pathogenesis of many other intracellular infectious organisms.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><pmid>16869940</pmid><doi>10.1111/j.1440-1711.2006.01460.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0818-9641
ispartof Immunology and cell biology, 2006-10, Vol.84 (5), p.467-474
issn 0818-9641
1440-1711
language eng
recordid cdi_proquest_miscellaneous_68806072
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acute-Phase Reaction - immunology
Animals
Antibodies, Monoclonal - immunology
Female
Forkhead Transcription Factors - metabolism
Interferon-gamma - biosynthesis
Interleukin-2 - biosynthesis
Mice
Mice, Inbred C57BL
mycobacterium
Mycobacterium bovis - growth & development
Mycobacterium bovis - immunology
Mycobacterium tuberculosis - growth & development
Mycobacterium tuberculosis - immunology
Receptors, Interleukin-2 - immunology
Receptors, Interleukin-2 - metabolism
regulatory T cell
T-Lymphocytes, Regulatory - immunology
tuberculosis
Tuberculosis, Pulmonary - immunology
Tuberculosis, Pulmonary - microbiology
Tuberculosis, Pulmonary - pathology
title Inactivation of CD4+CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inactivation%20of%20CD4+CD25+%20regulatory%20T%20cells%20during%20early%20mycobacterial%20infection%20increases%20cytokine%20production%20but%20does%20not%20affect%20pathogen%20load&rft.jtitle=Immunology%20and%20cell%20biology&rft.au=Quinn,%20Kylie%20M&rft.date=2006-10&rft.volume=84&rft.issue=5&rft.spage=467&rft.epage=474&rft.pages=467-474&rft.issn=0818-9641&rft.eissn=1440-1711&rft_id=info:doi/10.1111/j.1440-1711.2006.01460.x&rft_dat=%3Cproquest_cross%3E68806072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786615146&rft_id=info:pmid/16869940&rfr_iscdi=true