Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide)

The crystallization kinetics of poly(l-lactide), PLLA, is slow enough to allow a quasi-amorphous polymer to be obtained at low temperature simply by quenching from the melt. The PLLA crystallization process was followed by differential scanning calorimetry and optical microscopy after nucleation iso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2005-11, Vol.6 (6), p.3283-3290
Hauptverfasser: Hernández Sánchez, F, Molina Mateo, J, Romero Colomer, F. J, Salmerón Sánchez, M, Gómez Ribelles, J. L, Mano, J. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3290
container_issue 6
container_start_page 3283
container_title Biomacromolecules
container_volume 6
creator Hernández Sánchez, F
Molina Mateo, J
Romero Colomer, F. J
Salmerón Sánchez, M
Gómez Ribelles, J. L
Mano, J. F
description The crystallization kinetics of poly(l-lactide), PLLA, is slow enough to allow a quasi-amorphous polymer to be obtained at low temperature simply by quenching from the melt. The PLLA crystallization process was followed by differential scanning calorimetry and optical microscopy after nucleation isothermal treatments at temperatures just below (53 °C) and just above (73 °C) the glass transition temperature. The crystallization exotherm shown in the heating thermograms shifts toward lower temperatures as the annealing time at 73 °C increases. The same effect is shown to a lesser extent when the sample nucleates at 53 °C, showing the ability to nucleate in the glassy state, already shown in other polymers. The shape of the DSC thermograms is modeled by using Avrami's theory and allows an estimation of the number of crystallization germs formed. The results of optical microscopy are converted to thermograms by evaluating the average gray level of the image recorded in transmission mode as a function of temperature and calculating its temperature derivative. The shape of such optical thermograms is quite similar to that of the DSC traces but shows some peculiarities after long nucleation treatments. Atomic force microscopy was used to analyze the crystal morphology and is an additional proof of the effect of nucleation in the glassy state. The crystalline morphology observed in samples crystallized after nucleation in the glassy state is qualitatively different from that of samples nucleated above the glass transition temperature, and the number of crystals seems to be much greater than what could be expected from the crystallization kinetics.
doi_str_mv 10.1021/bm050323t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68795349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68795349</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-4e6e700855ead4caf4f21ce7a9805c37d91abfa67bbd8c783c530d3ad63280a83</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4Mobk4P_gPSi-IO1aRpmvQowx-DoTvMg6fymr5iR9rMpEXmX2_nhrsIQuCFx-d9H-9DyDmjN4xG7DavqaA84u0BGTIRJWGc0Ojw5y9CKVM5ICfeLymlKY_FMRmwJFJcCjkkb9OmNB02GgNbBjP7GS6wXqGDtnMYPHfaILSVbYL-te8YTNzat2BM9bVtz53V6P1meG7N-tqEBnRbFTg-JUclGI9nuzoirw_3i8lTOHt5nE7uZiFwSdswxgQlpUoIhCLWUMZlxDRKSBUVmssiZZCXkMg8L5SWimvBacGhSHikKCg-Ilfb3JWzHx36Nqsrr9EYaNB2PkuUTAWP03_BqPfDVLxJHG9B7az3Dsts5aoa3DpjNNsIz36F9-zFLrTLayz25M5wD1zuAPAaTOmg0ZXfc7K_IlXJngPts6XtXNNL-2PhN68BlE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20001848</pqid></control><display><type>article</type><title>Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide)</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Hernández Sánchez, F ; Molina Mateo, J ; Romero Colomer, F. J ; Salmerón Sánchez, M ; Gómez Ribelles, J. L ; Mano, J. F</creator><creatorcontrib>Hernández Sánchez, F ; Molina Mateo, J ; Romero Colomer, F. J ; Salmerón Sánchez, M ; Gómez Ribelles, J. L ; Mano, J. F</creatorcontrib><description>The crystallization kinetics of poly(l-lactide), PLLA, is slow enough to allow a quasi-amorphous polymer to be obtained at low temperature simply by quenching from the melt. The PLLA crystallization process was followed by differential scanning calorimetry and optical microscopy after nucleation isothermal treatments at temperatures just below (53 °C) and just above (73 °C) the glass transition temperature. The crystallization exotherm shown in the heating thermograms shifts toward lower temperatures as the annealing time at 73 °C increases. The same effect is shown to a lesser extent when the sample nucleates at 53 °C, showing the ability to nucleate in the glassy state, already shown in other polymers. The shape of the DSC thermograms is modeled by using Avrami's theory and allows an estimation of the number of crystallization germs formed. The results of optical microscopy are converted to thermograms by evaluating the average gray level of the image recorded in transmission mode as a function of temperature and calculating its temperature derivative. The shape of such optical thermograms is quite similar to that of the DSC traces but shows some peculiarities after long nucleation treatments. Atomic force microscopy was used to analyze the crystal morphology and is an additional proof of the effect of nucleation in the glassy state. The crystalline morphology observed in samples crystallized after nucleation in the glassy state is qualitatively different from that of samples nucleated above the glass transition temperature, and the number of crystals seems to be much greater than what could be expected from the crystallization kinetics.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm050323t</identifier><identifier>PMID: 16283757</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biocompatible Materials - chemistry ; Biophysical Phenomena ; Biophysics ; Calorimetry, Differential Scanning ; Chemical Phenomena ; Chemistry, Physical ; Crystallization ; Exact sciences and technology ; Hot Temperature ; Hydroxybutyrates ; Kinetics ; Macromolecular Substances - chemistry ; Microscopy ; Microscopy, Atomic Force ; Molecular Conformation ; Molecular Weight ; Organic polymers ; Phase Transition ; Physicochemistry of polymers ; Polyesters - chemistry ; Polymers ; Properties and characterization ; Temperature ; Thermodynamics ; Time Factors ; Transition Temperature</subject><ispartof>Biomacromolecules, 2005-11, Vol.6 (6), p.3283-3290</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-4e6e700855ead4caf4f21ce7a9805c37d91abfa67bbd8c783c530d3ad63280a83</citedby><cites>FETCH-LOGICAL-a370t-4e6e700855ead4caf4f21ce7a9805c37d91abfa67bbd8c783c530d3ad63280a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm050323t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm050323t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17280986$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16283757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández Sánchez, F</creatorcontrib><creatorcontrib>Molina Mateo, J</creatorcontrib><creatorcontrib>Romero Colomer, F. J</creatorcontrib><creatorcontrib>Salmerón Sánchez, M</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L</creatorcontrib><creatorcontrib>Mano, J. F</creatorcontrib><title>Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide)</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>The crystallization kinetics of poly(l-lactide), PLLA, is slow enough to allow a quasi-amorphous polymer to be obtained at low temperature simply by quenching from the melt. The PLLA crystallization process was followed by differential scanning calorimetry and optical microscopy after nucleation isothermal treatments at temperatures just below (53 °C) and just above (73 °C) the glass transition temperature. The crystallization exotherm shown in the heating thermograms shifts toward lower temperatures as the annealing time at 73 °C increases. The same effect is shown to a lesser extent when the sample nucleates at 53 °C, showing the ability to nucleate in the glassy state, already shown in other polymers. The shape of the DSC thermograms is modeled by using Avrami's theory and allows an estimation of the number of crystallization germs formed. The results of optical microscopy are converted to thermograms by evaluating the average gray level of the image recorded in transmission mode as a function of temperature and calculating its temperature derivative. The shape of such optical thermograms is quite similar to that of the DSC traces but shows some peculiarities after long nucleation treatments. Atomic force microscopy was used to analyze the crystal morphology and is an additional proof of the effect of nucleation in the glassy state. The crystalline morphology observed in samples crystallized after nucleation in the glassy state is qualitatively different from that of samples nucleated above the glass transition temperature, and the number of crystals seems to be much greater than what could be expected from the crystallization kinetics.</description><subject>Applied sciences</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Calorimetry, Differential Scanning</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Hot Temperature</subject><subject>Hydroxybutyrates</subject><subject>Kinetics</subject><subject>Macromolecular Substances - chemistry</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Molecular Conformation</subject><subject>Molecular Weight</subject><subject>Organic polymers</subject><subject>Phase Transition</subject><subject>Physicochemistry of polymers</subject><subject>Polyesters - chemistry</subject><subject>Polymers</subject><subject>Properties and characterization</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><subject>Transition Temperature</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAUx4Mobk4P_gPSi-IO1aRpmvQowx-DoTvMg6fymr5iR9rMpEXmX2_nhrsIQuCFx-d9H-9DyDmjN4xG7DavqaA84u0BGTIRJWGc0Ojw5y9CKVM5ICfeLymlKY_FMRmwJFJcCjkkb9OmNB02GgNbBjP7GS6wXqGDtnMYPHfaILSVbYL-te8YTNzat2BM9bVtz53V6P1meG7N-tqEBnRbFTg-JUclGI9nuzoirw_3i8lTOHt5nE7uZiFwSdswxgQlpUoIhCLWUMZlxDRKSBUVmssiZZCXkMg8L5SWimvBacGhSHikKCg-Ilfb3JWzHx36Nqsrr9EYaNB2PkuUTAWP03_BqPfDVLxJHG9B7az3Dsts5aoa3DpjNNsIz36F9-zFLrTLayz25M5wD1zuAPAaTOmg0ZXfc7K_IlXJngPts6XtXNNL-2PhN68BlE4</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Hernández Sánchez, F</creator><creator>Molina Mateo, J</creator><creator>Romero Colomer, F. J</creator><creator>Salmerón Sánchez, M</creator><creator>Gómez Ribelles, J. L</creator><creator>Mano, J. F</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide)</title><author>Hernández Sánchez, F ; Molina Mateo, J ; Romero Colomer, F. J ; Salmerón Sánchez, M ; Gómez Ribelles, J. L ; Mano, J. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-4e6e700855ead4caf4f21ce7a9805c37d91abfa67bbd8c783c530d3ad63280a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Calorimetry, Differential Scanning</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Hot Temperature</topic><topic>Hydroxybutyrates</topic><topic>Kinetics</topic><topic>Macromolecular Substances - chemistry</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Molecular Conformation</topic><topic>Molecular Weight</topic><topic>Organic polymers</topic><topic>Phase Transition</topic><topic>Physicochemistry of polymers</topic><topic>Polyesters - chemistry</topic><topic>Polymers</topic><topic>Properties and characterization</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><topic>Transition Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández Sánchez, F</creatorcontrib><creatorcontrib>Molina Mateo, J</creatorcontrib><creatorcontrib>Romero Colomer, F. J</creatorcontrib><creatorcontrib>Salmerón Sánchez, M</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L</creatorcontrib><creatorcontrib>Mano, J. F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández Sánchez, F</au><au>Molina Mateo, J</au><au>Romero Colomer, F. J</au><au>Salmerón Sánchez, M</au><au>Gómez Ribelles, J. L</au><au>Mano, J. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide)</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>6</volume><issue>6</issue><spage>3283</spage><epage>3290</epage><pages>3283-3290</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>The crystallization kinetics of poly(l-lactide), PLLA, is slow enough to allow a quasi-amorphous polymer to be obtained at low temperature simply by quenching from the melt. The PLLA crystallization process was followed by differential scanning calorimetry and optical microscopy after nucleation isothermal treatments at temperatures just below (53 °C) and just above (73 °C) the glass transition temperature. The crystallization exotherm shown in the heating thermograms shifts toward lower temperatures as the annealing time at 73 °C increases. The same effect is shown to a lesser extent when the sample nucleates at 53 °C, showing the ability to nucleate in the glassy state, already shown in other polymers. The shape of the DSC thermograms is modeled by using Avrami's theory and allows an estimation of the number of crystallization germs formed. The results of optical microscopy are converted to thermograms by evaluating the average gray level of the image recorded in transmission mode as a function of temperature and calculating its temperature derivative. The shape of such optical thermograms is quite similar to that of the DSC traces but shows some peculiarities after long nucleation treatments. Atomic force microscopy was used to analyze the crystal morphology and is an additional proof of the effect of nucleation in the glassy state. The crystalline morphology observed in samples crystallized after nucleation in the glassy state is qualitatively different from that of samples nucleated above the glass transition temperature, and the number of crystals seems to be much greater than what could be expected from the crystallization kinetics.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16283757</pmid><doi>10.1021/bm050323t</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2005-11, Vol.6 (6), p.3283-3290
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_68795349
source American Chemical Society; MEDLINE
subjects Applied sciences
Biocompatible Materials - chemistry
Biophysical Phenomena
Biophysics
Calorimetry, Differential Scanning
Chemical Phenomena
Chemistry, Physical
Crystallization
Exact sciences and technology
Hot Temperature
Hydroxybutyrates
Kinetics
Macromolecular Substances - chemistry
Microscopy
Microscopy, Atomic Force
Molecular Conformation
Molecular Weight
Organic polymers
Phase Transition
Physicochemistry of polymers
Polyesters - chemistry
Polymers
Properties and characterization
Temperature
Thermodynamics
Time Factors
Transition Temperature
title Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Low-Temperature%20Nucleation%20on%20the%20Crystallization%20Process%20of%20Poly(l-lactide)&rft.jtitle=Biomacromolecules&rft.au=Hern%C3%A1ndez%20S%C3%A1nchez,%20F&rft.date=2005-11-01&rft.volume=6&rft.issue=6&rft.spage=3283&rft.epage=3290&rft.pages=3283-3290&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm050323t&rft_dat=%3Cproquest_cross%3E68795349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20001848&rft_id=info:pmid/16283757&rfr_iscdi=true