Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina
Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (IL...
Gespeichert in:
Veröffentlicht in: | Glia 2006-10, Vol.54 (5), p.376-393 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | 5 |
container_start_page | 376 |
container_title | Glia |
container_volume | 54 |
creator | Tassi, Mohamed Calvente, Ruth Marín-Teva, José L. Cuadros, Miguel A. Santos, Ana M. Carrasco, Maria-Carmen Sánchez-López, Ana M. Navascués, Julio |
description | Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (ILM) covered by a carpet of MCEF (ILM/MCEF sheets), to which the cells remain adhered. Morphological changes of microglial cells cultured on ILM/MCEF sheets for 4 days were characterized in this study. During the first minutes in vitro, lamellipodia‐bearing bipolar microglial cells became rounded in shape. From 1 to 24 h in vitro (hiv), microglial cells swept and phagocytosed the MCEF on which they were initially adhered, becoming directly adhered on the ILM. MCEF sweep was dependent on active cell motility, as shown by inhibition of sweep after cytochalasin D treatment. From 24 hiv on, after MCEF phagocytosis, microglial cells became more flattened, increasing the surface area of their adhesion to substrate, and expressed the β1 subunit of integrins on their membrane. Morphological evidence suggested that microglial cells migrated for short distances on ILM/MCEF sheets, leaving tracks produced by their strong adhesion to the substrate. The simplicity of the isolation method, the immediate availability of cultured microglial cells, and the presence of multiple functional processes (phagocytosis, migration, upregulation of surface molecules, etc.) make cultures of microglial cells on ILM/MCEF sheets a valuable model system for in vitro experimental investigation of microglial cell functions. © 2006 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/glia.20393 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68792991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68792991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4613-1181d2f97bb5e2f3e5c68ec2ccf08d0b7eef70c2e66f1ac5bdc027b5eb7e2acb3</originalsourceid><addsrcrecordid>eNp9kM9u1DAQxi0EokvhwgMgX-CAlNZ_dm3n2FZ0W2lLhVSE1IvlOOOtwYlbO2nZd-PGi-F0F3rjZHnm98038yH0lpIDSgg7XAdvDhjhNX-GZpTUqqKUi-doRlQ9r-i8pnvoVc7fCaHlI1-iPSqUEoywGRqO4cbc-5hwdNj3-N4PKWI7hmFM0GLTQRN9iztvU5x8ArYQQi6FdTKD79c49vji968QID22MPRt5QCGadpwA_huNL5UuyZtIk5QNOY1euFMyPBm9-6jr6efrk7OqtXl8vzkaFXZuaC8XKFoy1wtm2YBzHFYWKHAMmsdUS1pJICTxDIQwlFjF01rCZOFLR1mbMP30Yft3NsU70bIg-58npY0PcQxa6FkzeqaFvDjFixX5pzA6dvkO5M2mhI9Zayn2_VjxgV-t5s6Nh20T-gu1AK83wEmWxNcMr31-YlTRM65IIWjW-7BB9j8x1IvV-dHf82rrcbnAX7-05j0QwvJ5UJ_-7zU18fi7MvF9ZUm_A9e0aY1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68792991</pqid></control><display><type>article</type><title>Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Tassi, Mohamed ; Calvente, Ruth ; Marín-Teva, José L. ; Cuadros, Miguel A. ; Santos, Ana M. ; Carrasco, Maria-Carmen ; Sánchez-López, Ana M. ; Navascués, Julio</creator><creatorcontrib>Tassi, Mohamed ; Calvente, Ruth ; Marín-Teva, José L. ; Cuadros, Miguel A. ; Santos, Ana M. ; Carrasco, Maria-Carmen ; Sánchez-López, Ana M. ; Navascués, Julio</creatorcontrib><description>Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (ILM) covered by a carpet of MCEF (ILM/MCEF sheets), to which the cells remain adhered. Morphological changes of microglial cells cultured on ILM/MCEF sheets for 4 days were characterized in this study. During the first minutes in vitro, lamellipodia‐bearing bipolar microglial cells became rounded in shape. From 1 to 24 h in vitro (hiv), microglial cells swept and phagocytosed the MCEF on which they were initially adhered, becoming directly adhered on the ILM. MCEF sweep was dependent on active cell motility, as shown by inhibition of sweep after cytochalasin D treatment. From 24 hiv on, after MCEF phagocytosis, microglial cells became more flattened, increasing the surface area of their adhesion to substrate, and expressed the β1 subunit of integrins on their membrane. Morphological evidence suggested that microglial cells migrated for short distances on ILM/MCEF sheets, leaving tracks produced by their strong adhesion to the substrate. The simplicity of the isolation method, the immediate availability of cultured microglial cells, and the presence of multiple functional processes (phagocytosis, migration, upregulation of surface molecules, etc.) make cultures of microglial cells on ILM/MCEF sheets a valuable model system for in vitro experimental investigation of microglial cell functions. © 2006 Wiley‐Liss, Inc.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.20393</identifier><identifier>PMID: 16886202</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; Cell Adhesion - drug effects ; Cell Adhesion - physiology ; Cell Culture Techniques - methods ; cell death ; cell migration ; Cell Movement - drug effects ; Cell Movement - physiology ; Cell Polarity - drug effects ; Cell Polarity - physiology ; Cell Shape - drug effects ; Cell Shape - physiology ; Cells, Cultured ; Coturnix ; Cytochalasin D - pharmacology ; Eye and associated structures. Visual pathways and centers. Vision ; Fluorescent Antibody Technique ; Fundamental and applied biological sciences. Psychology ; Isolated neuron and nerve. Neuroglia ; Microglia - cytology ; Microglia - drug effects ; Microglia - physiology ; Nucleic Acid Synthesis Inhibitors - pharmacology ; Organogenesis - drug effects ; Organogenesis - physiology ; phagocytosis ; Phagocytosis - drug effects ; Phagocytosis - physiology ; Pseudopodia - drug effects ; Pseudopodia - physiology ; Pseudopodia - ultrastructure ; Retina - cytology ; Retina - embryology ; Vertebrates: nervous system and sense organs ; β1 integrin subunit</subject><ispartof>Glia, 2006-10, Vol.54 (5), p.376-393</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><rights>2006 INIST-CNRS</rights><rights>2006 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4613-1181d2f97bb5e2f3e5c68ec2ccf08d0b7eef70c2e66f1ac5bdc027b5eb7e2acb3</citedby><cites>FETCH-LOGICAL-c4613-1181d2f97bb5e2f3e5c68ec2ccf08d0b7eef70c2e66f1ac5bdc027b5eb7e2acb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.20393$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.20393$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18074360$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16886202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tassi, Mohamed</creatorcontrib><creatorcontrib>Calvente, Ruth</creatorcontrib><creatorcontrib>Marín-Teva, José L.</creatorcontrib><creatorcontrib>Cuadros, Miguel A.</creatorcontrib><creatorcontrib>Santos, Ana M.</creatorcontrib><creatorcontrib>Carrasco, Maria-Carmen</creatorcontrib><creatorcontrib>Sánchez-López, Ana M.</creatorcontrib><creatorcontrib>Navascués, Julio</creatorcontrib><title>Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina</title><title>Glia</title><addtitle>Glia</addtitle><description>Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (ILM) covered by a carpet of MCEF (ILM/MCEF sheets), to which the cells remain adhered. Morphological changes of microglial cells cultured on ILM/MCEF sheets for 4 days were characterized in this study. During the first minutes in vitro, lamellipodia‐bearing bipolar microglial cells became rounded in shape. From 1 to 24 h in vitro (hiv), microglial cells swept and phagocytosed the MCEF on which they were initially adhered, becoming directly adhered on the ILM. MCEF sweep was dependent on active cell motility, as shown by inhibition of sweep after cytochalasin D treatment. From 24 hiv on, after MCEF phagocytosis, microglial cells became more flattened, increasing the surface area of their adhesion to substrate, and expressed the β1 subunit of integrins on their membrane. Morphological evidence suggested that microglial cells migrated for short distances on ILM/MCEF sheets, leaving tracks produced by their strong adhesion to the substrate. The simplicity of the isolation method, the immediate availability of cultured microglial cells, and the presence of multiple functional processes (phagocytosis, migration, upregulation of surface molecules, etc.) make cultures of microglial cells on ILM/MCEF sheets a valuable model system for in vitro experimental investigation of microglial cell functions. © 2006 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Culture Techniques - methods</subject><subject>cell death</subject><subject>cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell Movement - physiology</subject><subject>Cell Polarity - drug effects</subject><subject>Cell Polarity - physiology</subject><subject>Cell Shape - drug effects</subject><subject>Cell Shape - physiology</subject><subject>Cells, Cultured</subject><subject>Coturnix</subject><subject>Cytochalasin D - pharmacology</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fluorescent Antibody Technique</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>Microglia - cytology</subject><subject>Microglia - drug effects</subject><subject>Microglia - physiology</subject><subject>Nucleic Acid Synthesis Inhibitors - pharmacology</subject><subject>Organogenesis - drug effects</subject><subject>Organogenesis - physiology</subject><subject>phagocytosis</subject><subject>Phagocytosis - drug effects</subject><subject>Phagocytosis - physiology</subject><subject>Pseudopodia - drug effects</subject><subject>Pseudopodia - physiology</subject><subject>Pseudopodia - ultrastructure</subject><subject>Retina - cytology</subject><subject>Retina - embryology</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>β1 integrin subunit</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9u1DAQxi0EokvhwgMgX-CAlNZ_dm3n2FZ0W2lLhVSE1IvlOOOtwYlbO2nZd-PGi-F0F3rjZHnm98038yH0lpIDSgg7XAdvDhjhNX-GZpTUqqKUi-doRlQ9r-i8pnvoVc7fCaHlI1-iPSqUEoywGRqO4cbc-5hwdNj3-N4PKWI7hmFM0GLTQRN9iztvU5x8ArYQQi6FdTKD79c49vji968QID22MPRt5QCGadpwA_huNL5UuyZtIk5QNOY1euFMyPBm9-6jr6efrk7OqtXl8vzkaFXZuaC8XKFoy1wtm2YBzHFYWKHAMmsdUS1pJICTxDIQwlFjF01rCZOFLR1mbMP30Yft3NsU70bIg-58npY0PcQxa6FkzeqaFvDjFixX5pzA6dvkO5M2mhI9Zayn2_VjxgV-t5s6Nh20T-gu1AK83wEmWxNcMr31-YlTRM65IIWjW-7BB9j8x1IvV-dHf82rrcbnAX7-05j0QwvJ5UJ_-7zU18fi7MvF9ZUm_A9e0aY1</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Tassi, Mohamed</creator><creator>Calvente, Ruth</creator><creator>Marín-Teva, José L.</creator><creator>Cuadros, Miguel A.</creator><creator>Santos, Ana M.</creator><creator>Carrasco, Maria-Carmen</creator><creator>Sánchez-López, Ana M.</creator><creator>Navascués, Julio</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200610</creationdate><title>Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina</title><author>Tassi, Mohamed ; Calvente, Ruth ; Marín-Teva, José L. ; Cuadros, Miguel A. ; Santos, Ana M. ; Carrasco, Maria-Carmen ; Sánchez-López, Ana M. ; Navascués, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4613-1181d2f97bb5e2f3e5c68ec2ccf08d0b7eef70c2e66f1ac5bdc027b5eb7e2acb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Culture Techniques - methods</topic><topic>cell death</topic><topic>cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell Movement - physiology</topic><topic>Cell Polarity - drug effects</topic><topic>Cell Polarity - physiology</topic><topic>Cell Shape - drug effects</topic><topic>Cell Shape - physiology</topic><topic>Cells, Cultured</topic><topic>Coturnix</topic><topic>Cytochalasin D - pharmacology</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fluorescent Antibody Technique</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>Microglia - cytology</topic><topic>Microglia - drug effects</topic><topic>Microglia - physiology</topic><topic>Nucleic Acid Synthesis Inhibitors - pharmacology</topic><topic>Organogenesis - drug effects</topic><topic>Organogenesis - physiology</topic><topic>phagocytosis</topic><topic>Phagocytosis - drug effects</topic><topic>Phagocytosis - physiology</topic><topic>Pseudopodia - drug effects</topic><topic>Pseudopodia - physiology</topic><topic>Pseudopodia - ultrastructure</topic><topic>Retina - cytology</topic><topic>Retina - embryology</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>β1 integrin subunit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tassi, Mohamed</creatorcontrib><creatorcontrib>Calvente, Ruth</creatorcontrib><creatorcontrib>Marín-Teva, José L.</creatorcontrib><creatorcontrib>Cuadros, Miguel A.</creatorcontrib><creatorcontrib>Santos, Ana M.</creatorcontrib><creatorcontrib>Carrasco, Maria-Carmen</creatorcontrib><creatorcontrib>Sánchez-López, Ana M.</creatorcontrib><creatorcontrib>Navascués, Julio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tassi, Mohamed</au><au>Calvente, Ruth</au><au>Marín-Teva, José L.</au><au>Cuadros, Miguel A.</au><au>Santos, Ana M.</au><au>Carrasco, Maria-Carmen</au><au>Sánchez-López, Ana M.</au><au>Navascués, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2006-10</date><risdate>2006</risdate><volume>54</volume><issue>5</issue><spage>376</spage><epage>393</epage><pages>376-393</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (ILM) covered by a carpet of MCEF (ILM/MCEF sheets), to which the cells remain adhered. Morphological changes of microglial cells cultured on ILM/MCEF sheets for 4 days were characterized in this study. During the first minutes in vitro, lamellipodia‐bearing bipolar microglial cells became rounded in shape. From 1 to 24 h in vitro (hiv), microglial cells swept and phagocytosed the MCEF on which they were initially adhered, becoming directly adhered on the ILM. MCEF sweep was dependent on active cell motility, as shown by inhibition of sweep after cytochalasin D treatment. From 24 hiv on, after MCEF phagocytosis, microglial cells became more flattened, increasing the surface area of their adhesion to substrate, and expressed the β1 subunit of integrins on their membrane. Morphological evidence suggested that microglial cells migrated for short distances on ILM/MCEF sheets, leaving tracks produced by their strong adhesion to the substrate. The simplicity of the isolation method, the immediate availability of cultured microglial cells, and the presence of multiple functional processes (phagocytosis, migration, upregulation of surface molecules, etc.) make cultures of microglial cells on ILM/MCEF sheets a valuable model system for in vitro experimental investigation of microglial cell functions. © 2006 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16886202</pmid><doi>10.1002/glia.20393</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2006-10, Vol.54 (5), p.376-393 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_proquest_miscellaneous_68792991 |
source | MEDLINE; Wiley Journals |
subjects | Animals Biological and medical sciences Cell Adhesion - drug effects Cell Adhesion - physiology Cell Culture Techniques - methods cell death cell migration Cell Movement - drug effects Cell Movement - physiology Cell Polarity - drug effects Cell Polarity - physiology Cell Shape - drug effects Cell Shape - physiology Cells, Cultured Coturnix Cytochalasin D - pharmacology Eye and associated structures. Visual pathways and centers. Vision Fluorescent Antibody Technique Fundamental and applied biological sciences. Psychology Isolated neuron and nerve. Neuroglia Microglia - cytology Microglia - drug effects Microglia - physiology Nucleic Acid Synthesis Inhibitors - pharmacology Organogenesis - drug effects Organogenesis - physiology phagocytosis Phagocytosis - drug effects Phagocytosis - physiology Pseudopodia - drug effects Pseudopodia - physiology Pseudopodia - ultrastructure Retina - cytology Retina - embryology Vertebrates: nervous system and sense organs β1 integrin subunit |
title | Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20in%20vitro%20cultured%20ameboid%20microglial%20cells%20migrating%20on%20M%C3%BCller%20cell%20end-feet%20in%20the%20quail%20embryo%20retina&rft.jtitle=Glia&rft.au=Tassi,%20Mohamed&rft.date=2006-10&rft.volume=54&rft.issue=5&rft.spage=376&rft.epage=393&rft.pages=376-393&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.20393&rft_dat=%3Cproquest_cross%3E68792991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68792991&rft_id=info:pmid/16886202&rfr_iscdi=true |