Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina

Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (IL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2006-10, Vol.54 (5), p.376-393
Hauptverfasser: Tassi, Mohamed, Calvente, Ruth, Marín-Teva, José L., Cuadros, Miguel A., Santos, Ana M., Carrasco, Maria-Carmen, Sánchez-López, Ana M., Navascués, Julio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 5
container_start_page 376
container_title Glia
container_volume 54
creator Tassi, Mohamed
Calvente, Ruth
Marín-Teva, José L.
Cuadros, Miguel A.
Santos, Ana M.
Carrasco, Maria-Carmen
Sánchez-López, Ana M.
Navascués, Julio
description Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (ILM) covered by a carpet of MCEF (ILM/MCEF sheets), to which the cells remain adhered. Morphological changes of microglial cells cultured on ILM/MCEF sheets for 4 days were characterized in this study. During the first minutes in vitro, lamellipodia‐bearing bipolar microglial cells became rounded in shape. From 1 to 24 h in vitro (hiv), microglial cells swept and phagocytosed the MCEF on which they were initially adhered, becoming directly adhered on the ILM. MCEF sweep was dependent on active cell motility, as shown by inhibition of sweep after cytochalasin D treatment. From 24 hiv on, after MCEF phagocytosis, microglial cells became more flattened, increasing the surface area of their adhesion to substrate, and expressed the β1 subunit of integrins on their membrane. Morphological evidence suggested that microglial cells migrated for short distances on ILM/MCEF sheets, leaving tracks produced by their strong adhesion to the substrate. The simplicity of the isolation method, the immediate availability of cultured microglial cells, and the presence of multiple functional processes (phagocytosis, migration, upregulation of surface molecules, etc.) make cultures of microglial cells on ILM/MCEF sheets a valuable model system for in vitro experimental investigation of microglial cell functions. © 2006 Wiley‐Liss, Inc.
doi_str_mv 10.1002/glia.20393
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68792991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68792991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4613-1181d2f97bb5e2f3e5c68ec2ccf08d0b7eef70c2e66f1ac5bdc027b5eb7e2acb3</originalsourceid><addsrcrecordid>eNp9kM9u1DAQxi0EokvhwgMgX-CAlNZ_dm3n2FZ0W2lLhVSE1IvlOOOtwYlbO2nZd-PGi-F0F3rjZHnm98038yH0lpIDSgg7XAdvDhjhNX-GZpTUqqKUi-doRlQ9r-i8pnvoVc7fCaHlI1-iPSqUEoywGRqO4cbc-5hwdNj3-N4PKWI7hmFM0GLTQRN9iztvU5x8ArYQQi6FdTKD79c49vji968QID22MPRt5QCGadpwA_huNL5UuyZtIk5QNOY1euFMyPBm9-6jr6efrk7OqtXl8vzkaFXZuaC8XKFoy1wtm2YBzHFYWKHAMmsdUS1pJICTxDIQwlFjF01rCZOFLR1mbMP30Yft3NsU70bIg-58npY0PcQxa6FkzeqaFvDjFixX5pzA6dvkO5M2mhI9Zayn2_VjxgV-t5s6Nh20T-gu1AK83wEmWxNcMr31-YlTRM65IIWjW-7BB9j8x1IvV-dHf82rrcbnAX7-05j0QwvJ5UJ_-7zU18fi7MvF9ZUm_A9e0aY1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68792991</pqid></control><display><type>article</type><title>Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Tassi, Mohamed ; Calvente, Ruth ; Marín-Teva, José L. ; Cuadros, Miguel A. ; Santos, Ana M. ; Carrasco, Maria-Carmen ; Sánchez-López, Ana M. ; Navascués, Julio</creator><creatorcontrib>Tassi, Mohamed ; Calvente, Ruth ; Marín-Teva, José L. ; Cuadros, Miguel A. ; Santos, Ana M. ; Carrasco, Maria-Carmen ; Sánchez-López, Ana M. ; Navascués, Julio</creatorcontrib><description>Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (ILM) covered by a carpet of MCEF (ILM/MCEF sheets), to which the cells remain adhered. Morphological changes of microglial cells cultured on ILM/MCEF sheets for 4 days were characterized in this study. During the first minutes in vitro, lamellipodia‐bearing bipolar microglial cells became rounded in shape. From 1 to 24 h in vitro (hiv), microglial cells swept and phagocytosed the MCEF on which they were initially adhered, becoming directly adhered on the ILM. MCEF sweep was dependent on active cell motility, as shown by inhibition of sweep after cytochalasin D treatment. From 24 hiv on, after MCEF phagocytosis, microglial cells became more flattened, increasing the surface area of their adhesion to substrate, and expressed the β1 subunit of integrins on their membrane. Morphological evidence suggested that microglial cells migrated for short distances on ILM/MCEF sheets, leaving tracks produced by their strong adhesion to the substrate. The simplicity of the isolation method, the immediate availability of cultured microglial cells, and the presence of multiple functional processes (phagocytosis, migration, upregulation of surface molecules, etc.) make cultures of microglial cells on ILM/MCEF sheets a valuable model system for in vitro experimental investigation of microglial cell functions. © 2006 Wiley‐Liss, Inc.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.20393</identifier><identifier>PMID: 16886202</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; Cell Adhesion - drug effects ; Cell Adhesion - physiology ; Cell Culture Techniques - methods ; cell death ; cell migration ; Cell Movement - drug effects ; Cell Movement - physiology ; Cell Polarity - drug effects ; Cell Polarity - physiology ; Cell Shape - drug effects ; Cell Shape - physiology ; Cells, Cultured ; Coturnix ; Cytochalasin D - pharmacology ; Eye and associated structures. Visual pathways and centers. Vision ; Fluorescent Antibody Technique ; Fundamental and applied biological sciences. Psychology ; Isolated neuron and nerve. Neuroglia ; Microglia - cytology ; Microglia - drug effects ; Microglia - physiology ; Nucleic Acid Synthesis Inhibitors - pharmacology ; Organogenesis - drug effects ; Organogenesis - physiology ; phagocytosis ; Phagocytosis - drug effects ; Phagocytosis - physiology ; Pseudopodia - drug effects ; Pseudopodia - physiology ; Pseudopodia - ultrastructure ; Retina - cytology ; Retina - embryology ; Vertebrates: nervous system and sense organs ; β1 integrin subunit</subject><ispartof>Glia, 2006-10, Vol.54 (5), p.376-393</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><rights>2006 INIST-CNRS</rights><rights>2006 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4613-1181d2f97bb5e2f3e5c68ec2ccf08d0b7eef70c2e66f1ac5bdc027b5eb7e2acb3</citedby><cites>FETCH-LOGICAL-c4613-1181d2f97bb5e2f3e5c68ec2ccf08d0b7eef70c2e66f1ac5bdc027b5eb7e2acb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.20393$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.20393$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18074360$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16886202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tassi, Mohamed</creatorcontrib><creatorcontrib>Calvente, Ruth</creatorcontrib><creatorcontrib>Marín-Teva, José L.</creatorcontrib><creatorcontrib>Cuadros, Miguel A.</creatorcontrib><creatorcontrib>Santos, Ana M.</creatorcontrib><creatorcontrib>Carrasco, Maria-Carmen</creatorcontrib><creatorcontrib>Sánchez-López, Ana M.</creatorcontrib><creatorcontrib>Navascués, Julio</creatorcontrib><title>Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina</title><title>Glia</title><addtitle>Glia</addtitle><description>Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (ILM) covered by a carpet of MCEF (ILM/MCEF sheets), to which the cells remain adhered. Morphological changes of microglial cells cultured on ILM/MCEF sheets for 4 days were characterized in this study. During the first minutes in vitro, lamellipodia‐bearing bipolar microglial cells became rounded in shape. From 1 to 24 h in vitro (hiv), microglial cells swept and phagocytosed the MCEF on which they were initially adhered, becoming directly adhered on the ILM. MCEF sweep was dependent on active cell motility, as shown by inhibition of sweep after cytochalasin D treatment. From 24 hiv on, after MCEF phagocytosis, microglial cells became more flattened, increasing the surface area of their adhesion to substrate, and expressed the β1 subunit of integrins on their membrane. Morphological evidence suggested that microglial cells migrated for short distances on ILM/MCEF sheets, leaving tracks produced by their strong adhesion to the substrate. The simplicity of the isolation method, the immediate availability of cultured microglial cells, and the presence of multiple functional processes (phagocytosis, migration, upregulation of surface molecules, etc.) make cultures of microglial cells on ILM/MCEF sheets a valuable model system for in vitro experimental investigation of microglial cell functions. © 2006 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Culture Techniques - methods</subject><subject>cell death</subject><subject>cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell Movement - physiology</subject><subject>Cell Polarity - drug effects</subject><subject>Cell Polarity - physiology</subject><subject>Cell Shape - drug effects</subject><subject>Cell Shape - physiology</subject><subject>Cells, Cultured</subject><subject>Coturnix</subject><subject>Cytochalasin D - pharmacology</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fluorescent Antibody Technique</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>Microglia - cytology</subject><subject>Microglia - drug effects</subject><subject>Microglia - physiology</subject><subject>Nucleic Acid Synthesis Inhibitors - pharmacology</subject><subject>Organogenesis - drug effects</subject><subject>Organogenesis - physiology</subject><subject>phagocytosis</subject><subject>Phagocytosis - drug effects</subject><subject>Phagocytosis - physiology</subject><subject>Pseudopodia - drug effects</subject><subject>Pseudopodia - physiology</subject><subject>Pseudopodia - ultrastructure</subject><subject>Retina - cytology</subject><subject>Retina - embryology</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>β1 integrin subunit</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9u1DAQxi0EokvhwgMgX-CAlNZ_dm3n2FZ0W2lLhVSE1IvlOOOtwYlbO2nZd-PGi-F0F3rjZHnm98038yH0lpIDSgg7XAdvDhjhNX-GZpTUqqKUi-doRlQ9r-i8pnvoVc7fCaHlI1-iPSqUEoywGRqO4cbc-5hwdNj3-N4PKWI7hmFM0GLTQRN9iztvU5x8ArYQQi6FdTKD79c49vji968QID22MPRt5QCGadpwA_huNL5UuyZtIk5QNOY1euFMyPBm9-6jr6efrk7OqtXl8vzkaFXZuaC8XKFoy1wtm2YBzHFYWKHAMmsdUS1pJICTxDIQwlFjF01rCZOFLR1mbMP30Yft3NsU70bIg-58npY0PcQxa6FkzeqaFvDjFixX5pzA6dvkO5M2mhI9Zayn2_VjxgV-t5s6Nh20T-gu1AK83wEmWxNcMr31-YlTRM65IIWjW-7BB9j8x1IvV-dHf82rrcbnAX7-05j0QwvJ5UJ_-7zU18fi7MvF9ZUm_A9e0aY1</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Tassi, Mohamed</creator><creator>Calvente, Ruth</creator><creator>Marín-Teva, José L.</creator><creator>Cuadros, Miguel A.</creator><creator>Santos, Ana M.</creator><creator>Carrasco, Maria-Carmen</creator><creator>Sánchez-López, Ana M.</creator><creator>Navascués, Julio</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200610</creationdate><title>Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina</title><author>Tassi, Mohamed ; Calvente, Ruth ; Marín-Teva, José L. ; Cuadros, Miguel A. ; Santos, Ana M. ; Carrasco, Maria-Carmen ; Sánchez-López, Ana M. ; Navascués, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4613-1181d2f97bb5e2f3e5c68ec2ccf08d0b7eef70c2e66f1ac5bdc027b5eb7e2acb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Culture Techniques - methods</topic><topic>cell death</topic><topic>cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell Movement - physiology</topic><topic>Cell Polarity - drug effects</topic><topic>Cell Polarity - physiology</topic><topic>Cell Shape - drug effects</topic><topic>Cell Shape - physiology</topic><topic>Cells, Cultured</topic><topic>Coturnix</topic><topic>Cytochalasin D - pharmacology</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fluorescent Antibody Technique</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>Microglia - cytology</topic><topic>Microglia - drug effects</topic><topic>Microglia - physiology</topic><topic>Nucleic Acid Synthesis Inhibitors - pharmacology</topic><topic>Organogenesis - drug effects</topic><topic>Organogenesis - physiology</topic><topic>phagocytosis</topic><topic>Phagocytosis - drug effects</topic><topic>Phagocytosis - physiology</topic><topic>Pseudopodia - drug effects</topic><topic>Pseudopodia - physiology</topic><topic>Pseudopodia - ultrastructure</topic><topic>Retina - cytology</topic><topic>Retina - embryology</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>β1 integrin subunit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tassi, Mohamed</creatorcontrib><creatorcontrib>Calvente, Ruth</creatorcontrib><creatorcontrib>Marín-Teva, José L.</creatorcontrib><creatorcontrib>Cuadros, Miguel A.</creatorcontrib><creatorcontrib>Santos, Ana M.</creatorcontrib><creatorcontrib>Carrasco, Maria-Carmen</creatorcontrib><creatorcontrib>Sánchez-López, Ana M.</creatorcontrib><creatorcontrib>Navascués, Julio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tassi, Mohamed</au><au>Calvente, Ruth</au><au>Marín-Teva, José L.</au><au>Cuadros, Miguel A.</au><au>Santos, Ana M.</au><au>Carrasco, Maria-Carmen</au><au>Sánchez-López, Ana M.</au><au>Navascués, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2006-10</date><risdate>2006</risdate><volume>54</volume><issue>5</issue><spage>376</spage><epage>393</epage><pages>376-393</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Ameboid microglial cells migrate tangentially on the vitreal part of quail embryo retinas by crawling on Müller cell end‐feet (MCEF) to which they adhere. These microglial cells can be cultured immediately after dissection of the eye and isolation of sheets containing the inner limiting membrane (ILM) covered by a carpet of MCEF (ILM/MCEF sheets), to which the cells remain adhered. Morphological changes of microglial cells cultured on ILM/MCEF sheets for 4 days were characterized in this study. During the first minutes in vitro, lamellipodia‐bearing bipolar microglial cells became rounded in shape. From 1 to 24 h in vitro (hiv), microglial cells swept and phagocytosed the MCEF on which they were initially adhered, becoming directly adhered on the ILM. MCEF sweep was dependent on active cell motility, as shown by inhibition of sweep after cytochalasin D treatment. From 24 hiv on, after MCEF phagocytosis, microglial cells became more flattened, increasing the surface area of their adhesion to substrate, and expressed the β1 subunit of integrins on their membrane. Morphological evidence suggested that microglial cells migrated for short distances on ILM/MCEF sheets, leaving tracks produced by their strong adhesion to the substrate. The simplicity of the isolation method, the immediate availability of cultured microglial cells, and the presence of multiple functional processes (phagocytosis, migration, upregulation of surface molecules, etc.) make cultures of microglial cells on ILM/MCEF sheets a valuable model system for in vitro experimental investigation of microglial cell functions. © 2006 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16886202</pmid><doi>10.1002/glia.20393</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2006-10, Vol.54 (5), p.376-393
issn 0894-1491
1098-1136
language eng
recordid cdi_proquest_miscellaneous_68792991
source MEDLINE; Wiley Journals
subjects Animals
Biological and medical sciences
Cell Adhesion - drug effects
Cell Adhesion - physiology
Cell Culture Techniques - methods
cell death
cell migration
Cell Movement - drug effects
Cell Movement - physiology
Cell Polarity - drug effects
Cell Polarity - physiology
Cell Shape - drug effects
Cell Shape - physiology
Cells, Cultured
Coturnix
Cytochalasin D - pharmacology
Eye and associated structures. Visual pathways and centers. Vision
Fluorescent Antibody Technique
Fundamental and applied biological sciences. Psychology
Isolated neuron and nerve. Neuroglia
Microglia - cytology
Microglia - drug effects
Microglia - physiology
Nucleic Acid Synthesis Inhibitors - pharmacology
Organogenesis - drug effects
Organogenesis - physiology
phagocytosis
Phagocytosis - drug effects
Phagocytosis - physiology
Pseudopodia - drug effects
Pseudopodia - physiology
Pseudopodia - ultrastructure
Retina - cytology
Retina - embryology
Vertebrates: nervous system and sense organs
β1 integrin subunit
title Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20in%20vitro%20cultured%20ameboid%20microglial%20cells%20migrating%20on%20M%C3%BCller%20cell%20end-feet%20in%20the%20quail%20embryo%20retina&rft.jtitle=Glia&rft.au=Tassi,%20Mohamed&rft.date=2006-10&rft.volume=54&rft.issue=5&rft.spage=376&rft.epage=393&rft.pages=376-393&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.20393&rft_dat=%3Cproquest_cross%3E68792991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68792991&rft_id=info:pmid/16886202&rfr_iscdi=true