Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees

In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2006-09, Vol.224 (4), p.828-837
Hauptverfasser: Bhandari, S, Fujino, T, Thammanagowda, S, Zhang, D, Xu, F, Joshi, C.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 837
container_issue 4
container_start_page 828
container_title Planta
container_volume 224
creator Bhandari, S
Fujino, T
Thammanagowda, S
Zhang, D
Xu, F
Joshi, C.P
description In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.
doi_str_mv 10.1007/s00425-006-0269-1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68788392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23389483</jstor_id><sourcerecordid>23389483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-8162450bcf02f297b2fb058ec4af7434be13213fa18de0926b598e93a5f1a8663</originalsourceid><addsrcrecordid>eNpdkd1u1DAQhSMEokvhAbgALCS4C4zt_DiXVQWloqJSoRJ3luOMt1ll7eBJgH0aXhVHWVGJG9ua883x2CfLnnN4xwHq9wRQiDIHqHIQVZPzB9mGF1LkAgr1MNsApDM0sjzJnhDtAJJY14-zE16VdVk2cpP9-X4YcJ_TiLZ3vWXGd2xCT33wjKaIRHlaxpAqP5HZgL_HpbjIwbHP1zc3lxdnXxj6LmyH2RpvCFeTu4jICG3wnYkH9ssMQ26Igu3NhB2zOAzzEBJNBz_dLW1b9Eis98ykcTxLtyM9zR45MxA-O-6n2e3HD9_OP-VX1xeX52dXuS0qNeWKV6IoobUOhBNN3QrXQqnQFsbVhSxa5FJw6QxXHUIjqrZsFDbSlI4bVVXyNHu7-o4x_JiRJr3vaZnReAwz6UrVSslGJPD1f-AuzNGn2bQSoOqqlIsbXyEbA1FEp8fY79M3aA56iU6v0ekUnV6i0zz1vDwaz-0eu_uOY1YJeHMEDFkzuGi87emeU1A36Y2Je7FyO5pC_KcLKVVTqEV_terOBG22MXncfhXAJXBolCxB_gWPCraX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820876536</pqid></control><display><type>article</type><title>Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>JSTOR</source><creator>Bhandari, S ; Fujino, T ; Thammanagowda, S ; Zhang, D ; Xu, F ; Joshi, C.P</creator><creatorcontrib>Bhandari, S ; Fujino, T ; Thammanagowda, S ; Zhang, D ; Xu, F ; Joshi, C.P</creatorcontrib><description>In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-006-0269-1</identifier><identifier>PMID: 16575593</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Agronomy. Soil science and plant productions ; Arabidopsis Proteins - immunology ; Biological and medical sciences ; Biosynthesis ; Cell walls ; Cellulase - genetics ; Cellulase - immunology ; Cellulase - metabolism ; cellulases ; Cellulose ; cellulose synthase ; Complementary DNA ; Economic plant physiology ; Fiber cells ; forest trees ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Gene Expression Regulation, Plant ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; In Situ Hybridization ; Membrane Proteins - immunology ; molecular cloning ; Molecular Sequence Data ; Plant cells ; plant proteins ; Plants ; Populus - enzymology ; Populus - genetics ; Populus tremuloides ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Stress, Mechanical ; Tension ; Tension wood ; Transgenic plants ; Trees - enzymology ; Trees - genetics ; Water relations, transpiration, stomata ; Wood ; Xylem</subject><ispartof>Planta, 2006-09, Vol.224 (4), p.828-837</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-8162450bcf02f297b2fb058ec4af7434be13213fa18de0926b598e93a5f1a8663</citedby><cites>FETCH-LOGICAL-c468t-8162450bcf02f297b2fb058ec4af7434be13213fa18de0926b598e93a5f1a8663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23389483$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23389483$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27928,27929,58021,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18079213$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16575593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhandari, S</creatorcontrib><creatorcontrib>Fujino, T</creatorcontrib><creatorcontrib>Thammanagowda, S</creatorcontrib><creatorcontrib>Zhang, D</creatorcontrib><creatorcontrib>Xu, F</creatorcontrib><creatorcontrib>Joshi, C.P</creatorcontrib><title>Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees</title><title>Planta</title><addtitle>Planta</addtitle><description>In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Arabidopsis Proteins - immunology</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Cell walls</subject><subject>Cellulase - genetics</subject><subject>Cellulase - immunology</subject><subject>Cellulase - metabolism</subject><subject>cellulases</subject><subject>Cellulose</subject><subject>cellulose synthase</subject><subject>Complementary DNA</subject><subject>Economic plant physiology</subject><subject>Fiber cells</subject><subject>forest trees</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>In Situ Hybridization</subject><subject>Membrane Proteins - immunology</subject><subject>molecular cloning</subject><subject>Molecular Sequence Data</subject><subject>Plant cells</subject><subject>plant proteins</subject><subject>Plants</subject><subject>Populus - enzymology</subject><subject>Populus - genetics</subject><subject>Populus tremuloides</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sequence Analysis, DNA</subject><subject>Stress, Mechanical</subject><subject>Tension</subject><subject>Tension wood</subject><subject>Transgenic plants</subject><subject>Trees - enzymology</subject><subject>Trees - genetics</subject><subject>Water relations, transpiration, stomata</subject><subject>Wood</subject><subject>Xylem</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkd1u1DAQhSMEokvhAbgALCS4C4zt_DiXVQWloqJSoRJ3luOMt1ll7eBJgH0aXhVHWVGJG9ua883x2CfLnnN4xwHq9wRQiDIHqHIQVZPzB9mGF1LkAgr1MNsApDM0sjzJnhDtAJJY14-zE16VdVk2cpP9-X4YcJ_TiLZ3vWXGd2xCT33wjKaIRHlaxpAqP5HZgL_HpbjIwbHP1zc3lxdnXxj6LmyH2RpvCFeTu4jICG3wnYkH9ssMQ26Igu3NhB2zOAzzEBJNBz_dLW1b9Eis98ykcTxLtyM9zR45MxA-O-6n2e3HD9_OP-VX1xeX52dXuS0qNeWKV6IoobUOhBNN3QrXQqnQFsbVhSxa5FJw6QxXHUIjqrZsFDbSlI4bVVXyNHu7-o4x_JiRJr3vaZnReAwz6UrVSslGJPD1f-AuzNGn2bQSoOqqlIsbXyEbA1FEp8fY79M3aA56iU6v0ekUnV6i0zz1vDwaz-0eu_uOY1YJeHMEDFkzuGi87emeU1A36Y2Je7FyO5pC_KcLKVVTqEV_terOBG22MXncfhXAJXBolCxB_gWPCraX</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Bhandari, S</creator><creator>Fujino, T</creator><creator>Thammanagowda, S</creator><creator>Zhang, D</creator><creator>Xu, F</creator><creator>Joshi, C.P</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060901</creationdate><title>Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees</title><author>Bhandari, S ; Fujino, T ; Thammanagowda, S ; Zhang, D ; Xu, F ; Joshi, C.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-8162450bcf02f297b2fb058ec4af7434be13213fa18de0926b598e93a5f1a8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Arabidopsis Proteins - immunology</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Cell walls</topic><topic>Cellulase - genetics</topic><topic>Cellulase - immunology</topic><topic>Cellulase - metabolism</topic><topic>cellulases</topic><topic>Cellulose</topic><topic>cellulose synthase</topic><topic>Complementary DNA</topic><topic>Economic plant physiology</topic><topic>Fiber cells</topic><topic>forest trees</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>In Situ Hybridization</topic><topic>Membrane Proteins - immunology</topic><topic>molecular cloning</topic><topic>Molecular Sequence Data</topic><topic>Plant cells</topic><topic>plant proteins</topic><topic>Plants</topic><topic>Populus - enzymology</topic><topic>Populus - genetics</topic><topic>Populus tremuloides</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sequence Analysis, DNA</topic><topic>Stress, Mechanical</topic><topic>Tension</topic><topic>Tension wood</topic><topic>Transgenic plants</topic><topic>Trees - enzymology</topic><topic>Trees - genetics</topic><topic>Water relations, transpiration, stomata</topic><topic>Wood</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhandari, S</creatorcontrib><creatorcontrib>Fujino, T</creatorcontrib><creatorcontrib>Thammanagowda, S</creatorcontrib><creatorcontrib>Zhang, D</creatorcontrib><creatorcontrib>Xu, F</creatorcontrib><creatorcontrib>Joshi, C.P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhandari, S</au><au>Fujino, T</au><au>Thammanagowda, S</au><au>Zhang, D</au><au>Xu, F</au><au>Joshi, C.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>224</volume><issue>4</issue><spage>828</spage><epage>837</epage><pages>828-837</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>16575593</pmid><doi>10.1007/s00425-006-0269-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2006-09, Vol.224 (4), p.828-837
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_68788392
source MEDLINE; SpringerNature Journals; JSTOR
subjects Agronomy. Soil science and plant productions
Arabidopsis Proteins - immunology
Biological and medical sciences
Biosynthesis
Cell walls
Cellulase - genetics
Cellulase - immunology
Cellulase - metabolism
cellulases
Cellulose
cellulose synthase
Complementary DNA
Economic plant physiology
Fiber cells
forest trees
Fundamental and applied biological sciences. Psychology
gene expression regulation
Gene Expression Regulation, Plant
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
In Situ Hybridization
Membrane Proteins - immunology
molecular cloning
Molecular Sequence Data
Plant cells
plant proteins
Plants
Populus - enzymology
Populus - genetics
Populus tremuloides
Reverse Transcriptase Polymerase Chain Reaction
Sequence Analysis, DNA
Stress, Mechanical
Tension
Tension wood
Transgenic plants
Trees - enzymology
Trees - genetics
Water relations, transpiration, stomata
Wood
Xylem
title Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xylem-specific%20and%20tension%20stress-responsive%20coexpression%20of%20KORRIGAN%20endoglucanase%20and%20three%20secondary%20wall-associated%20cellulose%20synthase%20genes%20in%20aspen%20trees&rft.jtitle=Planta&rft.au=Bhandari,%20S&rft.date=2006-09-01&rft.volume=224&rft.issue=4&rft.spage=828&rft.epage=837&rft.pages=828-837&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-006-0269-1&rft_dat=%3Cjstor_proqu%3E23389483%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820876536&rft_id=info:pmid/16575593&rft_jstor_id=23389483&rfr_iscdi=true