An appraisal of methods for the analysis of longitudinal categorical data with MAR drop-outs

A number of methods for analysing longitudinal ordinal categorical data with missing‐at‐random drop‐outs are considered. Two are maximum‐likelihood methods (MAXLIK) which employ marginal global odds ratios to model associations. The remainder use weighted or unweighted generalized estimating equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2005-12, Vol.24 (23), p.3549-3563
Hauptverfasser: O'Hara Hines, R. J., Hines, W. G. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3563
container_issue 23
container_start_page 3549
container_title Statistics in medicine
container_volume 24
creator O'Hara Hines, R. J.
Hines, W. G. S.
description A number of methods for analysing longitudinal ordinal categorical data with missing‐at‐random drop‐outs are considered. Two are maximum‐likelihood methods (MAXLIK) which employ marginal global odds ratios to model associations. The remainder use weighted or unweighted generalized estimating equations (GEE). Two of the GEE use Cholesky‐decomposed standardized residuals to model the association structure, while another three extend methods developed for longitudinal binary data in which the association structures are modelled using either Gaussian estimation, multivariate normal estimating equations or conditional residuals. Simulated data sets were used to discover differences among the methods in terms of biases, variances and convergence rates when the association structure is misspecified. The methods were also applied to a real medical data set. Two of the GEE methods, referred to as Cond and ML‐norm in this paper and by their originators, were found to have relatively good convergence rates and mean squared errors for all sample sizes (80, 120, 300) considered, and one more, referred to as MGEE in this paper and by its originators, worked fairly well for all but the smallest sample size, 80. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.2210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68780996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>935343391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3140-8c42b47ba1befd3790769955add44bd1e933570078ee85f3b1a826181b898e283</originalsourceid><addsrcrecordid>eNp10FtLHDEYBuAgLbpqwV8gwQvxZmwOk8NcLlIPdG2hrvRGCJlJxo3ObKZJBrv_vll2qFDoVULy8H58LwAnGF1ihMjn6PpLQjDaAzOMKlEgwuQHMENEiIILzA7AYYwvCGHMiNgHB5gTLCTjM_A0X0M9DEG7qDvoW9jbtPImwtYHmFYW6rXuNtHF7V_n188ujcblN9joZJ99cE2-G500fHNpBe_nP6AJfij8mOIx-NjqLtpP03kEHq-_LK9ui8X3m7ur-aJoKC5RIZuS1KWoNa5ta6iokOBVxZg2pixrg21FKRMICWmtZC2tsZaEY4lrWUlLJD0C57vcIfhfo41J9S42tuv02voxKi6FRFXFMzz7B774MeRtoiKE4jyao4wudqgJPsZgWzUE1-uwURipbd0q1622dWd6OuWNdW_NO5z6zaDYgTfX2c1_g9TD3f0UOHkXk_391-vwqriggqmf327U1-Xtkj4sS7WgfwCns5b4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223137960</pqid></control><display><type>article</type><title>An appraisal of methods for the analysis of longitudinal categorical data with MAR drop-outs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>O'Hara Hines, R. J. ; Hines, W. G. S.</creator><creatorcontrib>O'Hara Hines, R. J. ; Hines, W. G. S.</creatorcontrib><description>A number of methods for analysing longitudinal ordinal categorical data with missing‐at‐random drop‐outs are considered. Two are maximum‐likelihood methods (MAXLIK) which employ marginal global odds ratios to model associations. The remainder use weighted or unweighted generalized estimating equations (GEE). Two of the GEE use Cholesky‐decomposed standardized residuals to model the association structure, while another three extend methods developed for longitudinal binary data in which the association structures are modelled using either Gaussian estimation, multivariate normal estimating equations or conditional residuals. Simulated data sets were used to discover differences among the methods in terms of biases, variances and convergence rates when the association structure is misspecified. The methods were also applied to a real medical data set. Two of the GEE methods, referred to as Cond and ML‐norm in this paper and by their originators, were found to have relatively good convergence rates and mean squared errors for all sample sizes (80, 120, 300) considered, and one more, referred to as MGEE in this paper and by its originators, worked fairly well for all but the smallest sample size, 80. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.2210</identifier><identifier>PMID: 16217856</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Biometry - methods ; Data analysis ; Data Interpretation, Statistical ; Estimating techniques ; Fluvoxamine - therapeutic use ; generalized estimating equations ; Humans ; Likelihood Functions ; Longitudinal Studies ; maximum likelihood ; Medical research ; Mental Disorders - drug therapy ; missing data ; Models, Statistical ; multinomial data ; Odds Ratio ; Serotonin Uptake Inhibitors - therapeutic use ; Statistical methods ; weighted generalized estimating equations</subject><ispartof>Statistics in medicine, 2005-12, Vol.24 (23), p.3549-3563</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Dec 15, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3140-8c42b47ba1befd3790769955add44bd1e933570078ee85f3b1a826181b898e283</citedby><cites>FETCH-LOGICAL-c3140-8c42b47ba1befd3790769955add44bd1e933570078ee85f3b1a826181b898e283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.2210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.2210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16217856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Hara Hines, R. J.</creatorcontrib><creatorcontrib>Hines, W. G. S.</creatorcontrib><title>An appraisal of methods for the analysis of longitudinal categorical data with MAR drop-outs</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>A number of methods for analysing longitudinal ordinal categorical data with missing‐at‐random drop‐outs are considered. Two are maximum‐likelihood methods (MAXLIK) which employ marginal global odds ratios to model associations. The remainder use weighted or unweighted generalized estimating equations (GEE). Two of the GEE use Cholesky‐decomposed standardized residuals to model the association structure, while another three extend methods developed for longitudinal binary data in which the association structures are modelled using either Gaussian estimation, multivariate normal estimating equations or conditional residuals. Simulated data sets were used to discover differences among the methods in terms of biases, variances and convergence rates when the association structure is misspecified. The methods were also applied to a real medical data set. Two of the GEE methods, referred to as Cond and ML‐norm in this paper and by their originators, were found to have relatively good convergence rates and mean squared errors for all sample sizes (80, 120, 300) considered, and one more, referred to as MGEE in this paper and by its originators, worked fairly well for all but the smallest sample size, 80. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>Biometry - methods</subject><subject>Data analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Estimating techniques</subject><subject>Fluvoxamine - therapeutic use</subject><subject>generalized estimating equations</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Longitudinal Studies</subject><subject>maximum likelihood</subject><subject>Medical research</subject><subject>Mental Disorders - drug therapy</subject><subject>missing data</subject><subject>Models, Statistical</subject><subject>multinomial data</subject><subject>Odds Ratio</subject><subject>Serotonin Uptake Inhibitors - therapeutic use</subject><subject>Statistical methods</subject><subject>weighted generalized estimating equations</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10FtLHDEYBuAgLbpqwV8gwQvxZmwOk8NcLlIPdG2hrvRGCJlJxo3ObKZJBrv_vll2qFDoVULy8H58LwAnGF1ihMjn6PpLQjDaAzOMKlEgwuQHMENEiIILzA7AYYwvCGHMiNgHB5gTLCTjM_A0X0M9DEG7qDvoW9jbtPImwtYHmFYW6rXuNtHF7V_n188ujcblN9joZJ99cE2-G500fHNpBe_nP6AJfij8mOIx-NjqLtpP03kEHq-_LK9ui8X3m7ur-aJoKC5RIZuS1KWoNa5ta6iokOBVxZg2pixrg21FKRMICWmtZC2tsZaEY4lrWUlLJD0C57vcIfhfo41J9S42tuv02voxKi6FRFXFMzz7B774MeRtoiKE4jyao4wudqgJPsZgWzUE1-uwURipbd0q1622dWd6OuWNdW_NO5z6zaDYgTfX2c1_g9TD3f0UOHkXk_391-vwqriggqmf327U1-Xtkj4sS7WgfwCns5b4</recordid><startdate>20051215</startdate><enddate>20051215</enddate><creator>O'Hara Hines, R. J.</creator><creator>Hines, W. G. S.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20051215</creationdate><title>An appraisal of methods for the analysis of longitudinal categorical data with MAR drop-outs</title><author>O'Hara Hines, R. J. ; Hines, W. G. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3140-8c42b47ba1befd3790769955add44bd1e933570078ee85f3b1a826181b898e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biometry - methods</topic><topic>Data analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Estimating techniques</topic><topic>Fluvoxamine - therapeutic use</topic><topic>generalized estimating equations</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Longitudinal Studies</topic><topic>maximum likelihood</topic><topic>Medical research</topic><topic>Mental Disorders - drug therapy</topic><topic>missing data</topic><topic>Models, Statistical</topic><topic>multinomial data</topic><topic>Odds Ratio</topic><topic>Serotonin Uptake Inhibitors - therapeutic use</topic><topic>Statistical methods</topic><topic>weighted generalized estimating equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Hara Hines, R. J.</creatorcontrib><creatorcontrib>Hines, W. G. S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Hara Hines, R. J.</au><au>Hines, W. G. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An appraisal of methods for the analysis of longitudinal categorical data with MAR drop-outs</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2005-12-15</date><risdate>2005</risdate><volume>24</volume><issue>23</issue><spage>3549</spage><epage>3563</epage><pages>3549-3563</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>A number of methods for analysing longitudinal ordinal categorical data with missing‐at‐random drop‐outs are considered. Two are maximum‐likelihood methods (MAXLIK) which employ marginal global odds ratios to model associations. The remainder use weighted or unweighted generalized estimating equations (GEE). Two of the GEE use Cholesky‐decomposed standardized residuals to model the association structure, while another three extend methods developed for longitudinal binary data in which the association structures are modelled using either Gaussian estimation, multivariate normal estimating equations or conditional residuals. Simulated data sets were used to discover differences among the methods in terms of biases, variances and convergence rates when the association structure is misspecified. The methods were also applied to a real medical data set. Two of the GEE methods, referred to as Cond and ML‐norm in this paper and by their originators, were found to have relatively good convergence rates and mean squared errors for all sample sizes (80, 120, 300) considered, and one more, referred to as MGEE in this paper and by its originators, worked fairly well for all but the smallest sample size, 80. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>16217856</pmid><doi>10.1002/sim.2210</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2005-12, Vol.24 (23), p.3549-3563
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_68780996
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biometry - methods
Data analysis
Data Interpretation, Statistical
Estimating techniques
Fluvoxamine - therapeutic use
generalized estimating equations
Humans
Likelihood Functions
Longitudinal Studies
maximum likelihood
Medical research
Mental Disorders - drug therapy
missing data
Models, Statistical
multinomial data
Odds Ratio
Serotonin Uptake Inhibitors - therapeutic use
Statistical methods
weighted generalized estimating equations
title An appraisal of methods for the analysis of longitudinal categorical data with MAR drop-outs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20appraisal%20of%20methods%20for%20the%20analysis%20of%20longitudinal%20categorical%20data%20with%20MAR%20drop-outs&rft.jtitle=Statistics%20in%20medicine&rft.au=O'Hara%20Hines,%20R.%20J.&rft.date=2005-12-15&rft.volume=24&rft.issue=23&rft.spage=3549&rft.epage=3563&rft.pages=3549-3563&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.2210&rft_dat=%3Cproquest_cross%3E935343391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223137960&rft_id=info:pmid/16217856&rfr_iscdi=true