Predicting the Thermal Resistance of Nanosized Constrictions
Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constric...
Gespeichert in:
Veröffentlicht in: | Nano letters 2005-11, Vol.5 (11), p.2155-2159 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2159 |
---|---|
container_issue | 11 |
container_start_page | 2155 |
container_title | Nano letters |
container_volume | 5 |
creator | Prasher, Ravi |
description | Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constriction of the order of a few nanometers. A continuum description of heat transport at these nanosized constrictions will break down. In this paper, an analytical model is presented in which the relevant length scales have been taken into consideration. The results show that the constriction resistance of nanoconstrictions is much higher than those predicted using macroscopic approaches. The Knudsen number is the key parameter for constriction formed between the same materials, whereas the microscopic Biot number based on phonon thermal boundary resistance is the key parameter for constriction formed between dissimilar materials. Finally, the model is applied to calculate the thermal resistance of the nanowire/planar interface. |
doi_str_mv | 10.1021/nl051710b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68779575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68779575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-2974b955bd7044c84b901e6c6ef787eb412ee84ae5ffd7c7295e40ab1ebdecc63</originalsourceid><addsrcrecordid>eNptkMtKw0AUhgdRbK0ufAHJRsFFdCaZSwbcSPAGRUXqOkwmJzYllzonWejTO6Wh3bg6_4HvXPgIOWf0htGI3bY1FUwxmh-QKRMxDaXW0eEuJ3xCThBXlFIdC3pMJkxGSnHOp-Tu3UFR2b5qv4J-CcFiCa4xdfABWGFvWgtBVwavpu2w-oUiSLsWe7cZ8OGUHJWmRjgb64x8Pj4s0udw_vb0kt7PQ8Op7sNIK55rIfJCUc5t4hvKQFoJpUoU5JxFAAk3IMqyUFZFWgCnJmeQF2CtjGfkart37brvAbDPmgot1LVpoRswk4lSWijhwestaF2H6KDM1q5qjPvJGM02qrKdKs9ejEuHvIFiT45uPHA5AgatqUvnbVS45_yfsZTRnjMWs1U3uNa7-OfgH7ZHfOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68779575</pqid></control><display><type>article</type><title>Predicting the Thermal Resistance of Nanosized Constrictions</title><source>ACS Publications</source><creator>Prasher, Ravi</creator><creatorcontrib>Prasher, Ravi</creatorcontrib><description>Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constriction of the order of a few nanometers. A continuum description of heat transport at these nanosized constrictions will break down. In this paper, an analytical model is presented in which the relevant length scales have been taken into consideration. The results show that the constriction resistance of nanoconstrictions is much higher than those predicted using macroscopic approaches. The Knudsen number is the key parameter for constriction formed between the same materials, whereas the microscopic Biot number based on phonon thermal boundary resistance is the key parameter for constriction formed between dissimilar materials. Finally, the model is applied to calculate the thermal resistance of the nanowire/planar interface.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl051710b</identifier><identifier>PMID: 16277444</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Electronics ; Exact sciences and technology ; Microelectronic fabrication (materials and surfaces technology) ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Structure of solids and liquids; crystallography</subject><ispartof>Nano letters, 2005-11, Vol.5 (11), p.2155-2159</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-2974b955bd7044c84b901e6c6ef787eb412ee84ae5ffd7c7295e40ab1ebdecc63</citedby><cites>FETCH-LOGICAL-a409t-2974b955bd7044c84b901e6c6ef787eb412ee84ae5ffd7c7295e40ab1ebdecc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl051710b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl051710b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17293662$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16277444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasher, Ravi</creatorcontrib><title>Predicting the Thermal Resistance of Nanosized Constrictions</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constriction of the order of a few nanometers. A continuum description of heat transport at these nanosized constrictions will break down. In this paper, an analytical model is presented in which the relevant length scales have been taken into consideration. The results show that the constriction resistance of nanoconstrictions is much higher than those predicted using macroscopic approaches. The Knudsen number is the key parameter for constriction formed between the same materials, whereas the microscopic Biot number based on phonon thermal boundary resistance is the key parameter for constriction formed between dissimilar materials. Finally, the model is applied to calculate the thermal resistance of the nanowire/planar interface.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Structure of solids and liquids; crystallography</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkMtKw0AUhgdRbK0ufAHJRsFFdCaZSwbcSPAGRUXqOkwmJzYllzonWejTO6Wh3bg6_4HvXPgIOWf0htGI3bY1FUwxmh-QKRMxDaXW0eEuJ3xCThBXlFIdC3pMJkxGSnHOp-Tu3UFR2b5qv4J-CcFiCa4xdfABWGFvWgtBVwavpu2w-oUiSLsWe7cZ8OGUHJWmRjgb64x8Pj4s0udw_vb0kt7PQ8Op7sNIK55rIfJCUc5t4hvKQFoJpUoU5JxFAAk3IMqyUFZFWgCnJmeQF2CtjGfkart37brvAbDPmgot1LVpoRswk4lSWijhwestaF2H6KDM1q5qjPvJGM02qrKdKs9ejEuHvIFiT45uPHA5AgatqUvnbVS45_yfsZTRnjMWs1U3uNa7-OfgH7ZHfOE</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Prasher, Ravi</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Predicting the Thermal Resistance of Nanosized Constrictions</title><author>Prasher, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-2974b955bd7044c84b901e6c6ef787eb412ee84ae5ffd7c7295e40ab1ebdecc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasher, Ravi</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasher, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Thermal Resistance of Nanosized Constrictions</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>5</volume><issue>11</issue><spage>2155</spage><epage>2159</epage><pages>2155-2159</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constriction of the order of a few nanometers. A continuum description of heat transport at these nanosized constrictions will break down. In this paper, an analytical model is presented in which the relevant length scales have been taken into consideration. The results show that the constriction resistance of nanoconstrictions is much higher than those predicted using macroscopic approaches. The Knudsen number is the key parameter for constriction formed between the same materials, whereas the microscopic Biot number based on phonon thermal boundary resistance is the key parameter for constriction formed between dissimilar materials. Finally, the model is applied to calculate the thermal resistance of the nanowire/planar interface.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16277444</pmid><doi>10.1021/nl051710b</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2005-11, Vol.5 (11), p.2155-2159 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_68779575 |
source | ACS Publications |
subjects | Applied sciences Condensed matter: structure, mechanical and thermal properties Electronics Exact sciences and technology Microelectronic fabrication (materials and surfaces technology) Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Structure of solids and liquids crystallography |
title | Predicting the Thermal Resistance of Nanosized Constrictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Thermal%20Resistance%20of%20Nanosized%20Constrictions&rft.jtitle=Nano%20letters&rft.au=Prasher,%20Ravi&rft.date=2005-11-01&rft.volume=5&rft.issue=11&rft.spage=2155&rft.epage=2159&rft.pages=2155-2159&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl051710b&rft_dat=%3Cproquest_cross%3E68779575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68779575&rft_id=info:pmid/16277444&rfr_iscdi=true |