Predicting the Thermal Resistance of Nanosized Constrictions

Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2005-11, Vol.5 (11), p.2155-2159
1. Verfasser: Prasher, Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2159
container_issue 11
container_start_page 2155
container_title Nano letters
container_volume 5
creator Prasher, Ravi
description Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constriction of the order of a few nanometers. A continuum description of heat transport at these nanosized constrictions will break down. In this paper, an analytical model is presented in which the relevant length scales have been taken into consideration. The results show that the constriction resistance of nanoconstrictions is much higher than those predicted using macroscopic approaches. The Knudsen number is the key parameter for constriction formed between the same materials, whereas the microscopic Biot number based on phonon thermal boundary resistance is the key parameter for constriction formed between dissimilar materials. Finally, the model is applied to calculate the thermal resistance of the nanowire/planar interface.
doi_str_mv 10.1021/nl051710b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68779575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68779575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-2974b955bd7044c84b901e6c6ef787eb412ee84ae5ffd7c7295e40ab1ebdecc63</originalsourceid><addsrcrecordid>eNptkMtKw0AUhgdRbK0ufAHJRsFFdCaZSwbcSPAGRUXqOkwmJzYllzonWejTO6Wh3bg6_4HvXPgIOWf0htGI3bY1FUwxmh-QKRMxDaXW0eEuJ3xCThBXlFIdC3pMJkxGSnHOp-Tu3UFR2b5qv4J-CcFiCa4xdfABWGFvWgtBVwavpu2w-oUiSLsWe7cZ8OGUHJWmRjgb64x8Pj4s0udw_vb0kt7PQ8Op7sNIK55rIfJCUc5t4hvKQFoJpUoU5JxFAAk3IMqyUFZFWgCnJmeQF2CtjGfkart37brvAbDPmgot1LVpoRswk4lSWijhwestaF2H6KDM1q5qjPvJGM02qrKdKs9ejEuHvIFiT45uPHA5AgatqUvnbVS45_yfsZTRnjMWs1U3uNa7-OfgH7ZHfOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68779575</pqid></control><display><type>article</type><title>Predicting the Thermal Resistance of Nanosized Constrictions</title><source>ACS Publications</source><creator>Prasher, Ravi</creator><creatorcontrib>Prasher, Ravi</creatorcontrib><description>Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constriction of the order of a few nanometers. A continuum description of heat transport at these nanosized constrictions will break down. In this paper, an analytical model is presented in which the relevant length scales have been taken into consideration. The results show that the constriction resistance of nanoconstrictions is much higher than those predicted using macroscopic approaches. The Knudsen number is the key parameter for constriction formed between the same materials, whereas the microscopic Biot number based on phonon thermal boundary resistance is the key parameter for constriction formed between dissimilar materials. Finally, the model is applied to calculate the thermal resistance of the nanowire/planar interface.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl051710b</identifier><identifier>PMID: 16277444</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Electronics ; Exact sciences and technology ; Microelectronic fabrication (materials and surfaces technology) ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Structure of solids and liquids; crystallography</subject><ispartof>Nano letters, 2005-11, Vol.5 (11), p.2155-2159</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-2974b955bd7044c84b901e6c6ef787eb412ee84ae5ffd7c7295e40ab1ebdecc63</citedby><cites>FETCH-LOGICAL-a409t-2974b955bd7044c84b901e6c6ef787eb412ee84ae5ffd7c7295e40ab1ebdecc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl051710b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl051710b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17293662$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16277444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasher, Ravi</creatorcontrib><title>Predicting the Thermal Resistance of Nanosized Constrictions</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constriction of the order of a few nanometers. A continuum description of heat transport at these nanosized constrictions will break down. In this paper, an analytical model is presented in which the relevant length scales have been taken into consideration. The results show that the constriction resistance of nanoconstrictions is much higher than those predicted using macroscopic approaches. The Knudsen number is the key parameter for constriction formed between the same materials, whereas the microscopic Biot number based on phonon thermal boundary resistance is the key parameter for constriction formed between dissimilar materials. Finally, the model is applied to calculate the thermal resistance of the nanowire/planar interface.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Structure of solids and liquids; crystallography</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkMtKw0AUhgdRbK0ufAHJRsFFdCaZSwbcSPAGRUXqOkwmJzYllzonWejTO6Wh3bg6_4HvXPgIOWf0htGI3bY1FUwxmh-QKRMxDaXW0eEuJ3xCThBXlFIdC3pMJkxGSnHOp-Tu3UFR2b5qv4J-CcFiCa4xdfABWGFvWgtBVwavpu2w-oUiSLsWe7cZ8OGUHJWmRjgb64x8Pj4s0udw_vb0kt7PQ8Op7sNIK55rIfJCUc5t4hvKQFoJpUoU5JxFAAk3IMqyUFZFWgCnJmeQF2CtjGfkart37brvAbDPmgot1LVpoRswk4lSWijhwestaF2H6KDM1q5qjPvJGM02qrKdKs9ejEuHvIFiT45uPHA5AgatqUvnbVS45_yfsZTRnjMWs1U3uNa7-OfgH7ZHfOE</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Prasher, Ravi</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Predicting the Thermal Resistance of Nanosized Constrictions</title><author>Prasher, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-2974b955bd7044c84b901e6c6ef787eb412ee84ae5ffd7c7295e40ab1ebdecc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasher, Ravi</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasher, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Thermal Resistance of Nanosized Constrictions</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>5</volume><issue>11</issue><spage>2155</spage><epage>2159</epage><pages>2155-2159</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Various devices and technologies using nanowires and nanoparticles are under intense investigation because of their promise. In these devices, nanowires or nanoparticles are typically in contact with another surface. The contact between a nanowire and a nanoparticle with a substrate forms a constriction of the order of a few nanometers. A continuum description of heat transport at these nanosized constrictions will break down. In this paper, an analytical model is presented in which the relevant length scales have been taken into consideration. The results show that the constriction resistance of nanoconstrictions is much higher than those predicted using macroscopic approaches. The Knudsen number is the key parameter for constriction formed between the same materials, whereas the microscopic Biot number based on phonon thermal boundary resistance is the key parameter for constriction formed between dissimilar materials. Finally, the model is applied to calculate the thermal resistance of the nanowire/planar interface.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16277444</pmid><doi>10.1021/nl051710b</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2005-11, Vol.5 (11), p.2155-2159
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_68779575
source ACS Publications
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Electronics
Exact sciences and technology
Microelectronic fabrication (materials and surfaces technology)
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Structure of solids and liquids
crystallography
title Predicting the Thermal Resistance of Nanosized Constrictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Thermal%20Resistance%20of%20Nanosized%20Constrictions&rft.jtitle=Nano%20letters&rft.au=Prasher,%20Ravi&rft.date=2005-11-01&rft.volume=5&rft.issue=11&rft.spage=2155&rft.epage=2159&rft.pages=2155-2159&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl051710b&rft_dat=%3Cproquest_cross%3E68779575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68779575&rft_id=info:pmid/16277444&rfr_iscdi=true