Exploring the Scope of the 29G12 Antibody Catalyzed 1,3-Dipolar Cycloaddition Reaction
29G12 is a murine monoclonal antibody programmed to catalyze the regio- and enantioselective 1,3-dipolar cycloaddition reaction between 4-acetamidobenzonitrile N-oxide 1a and N,N-dimethylacrylamide 2a (Toker, J. D.; Wentworth, P., Jr.; Hu, Y.; Houk, K. N.; Janda, K. D. J. Am. Chem. Soc. 2000, 122, 3...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2005-09, Vol.70 (20), p.7810-7815 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7815 |
---|---|
container_issue | 20 |
container_start_page | 7810 |
container_title | Journal of organic chemistry |
container_volume | 70 |
creator | Toker, Jonathan D Tremblay, Martin R Yli-Kauhaluoma, Jari Wentworth, Anita D Zhou, Bin Wentworth, Paul Janda, Kim D |
description | 29G12 is a murine monoclonal antibody programmed to catalyze the regio- and enantioselective 1,3-dipolar cycloaddition reaction between 4-acetamidobenzonitrile N-oxide 1a and N,N-dimethylacrylamide 2a (Toker, J. D.; Wentworth, P., Jr.; Hu, Y.; Houk, K. N.; Janda, K. D. J. Am. Chem. Soc. 2000, 122, 3244). Given the unique nature of 29G12 as a protein biocatalyst for this chemical reaction, we have investigated both the substrate specificity and mechanistic parameters of the 29G12-catalyzed process. These studies have shown that while 29G12 is specific for its dipole substrate 1a, the antibody is highly promiscuous with respect to the dipolarophiles it can process. 29G12 accepts a bulky hydrophobic dipolarophile cosubstrate, with rates of product formation up to 70-fold faster than with the original substrate 2a. In all cases, the respective isoxazoline products are produced with exquisite regio- and stereochemical control (78−98% ee). Comparison between the steady-state kinetic parameters from the 29G12-catalyzed reaction of 1a with the most efficient versus the original dipolarophile cosubstrate (2m and 2a, respectively), reveals that while the effective molarities (EM)s are almost identical (EM( 2m ) 26 M; EM( 2a ) 23 M), the affinity of 29G12 for the larger dipolarophile 2m is more than 1 order of magnitude higher than for 2a [K m(2m) 0.44 ± 0.04 mM; K m(2a) 5.8 ± 0.4 mM]. Furthermore, when 2m is the cosubstrate, the affinity of 29G12 for its dipole 1a is also greatly improved [K m(1a) 0.82 ± 0.1 mM compared to K m(1a) 3.4 ± 0.4 mM when 2a is the cosubstrate]. An analysis of the temperature dependence of the 29G12-catalyzed reaction between 1a and 2m reveals that catalysis is achieved via a decrease in enthalpy of activation (ΔΔH ⧧ 4.4 kcal mol-1) and involves a large increase in the entropy of activation (ΔΔS ⧧ 10.4 eu). The improved affinity of 29G12 for the nitrile oxide 1a in the presence of 2m, coupled with the increase in ΔΔS ⧧ during the 29G12-catalyzed reaction between 1a and 2m supports the notion of a structural reorganization of the active site to facilitate this antibody-catalyzed reaction. |
doi_str_mv | 10.1021/jo050410b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68775557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68775557</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-e99c2a1c2c6963eeb709b1e57f7e7bf77e853b4096373e1c2f87492ae0ee3eee3</originalsourceid><addsrcrecordid>eNpt0EtLxDAQB_Agiq6Pg19AelEQrObRdtqjrE_whS_ES0jTqUa7TU264Prpje7iXswlCfNjmPkTssnoPqOcHbxZmtKE0XKBDFjKaZwVNFkkA0o5jwXPxApZ9f6NhpOm6TJZYRkHEJQOyOPxZ9dYZ9qXqH_F6E7bDiNb_354ccp4dNj2prTVJBqqXjWTL6witifiI9PZRrloONGNVVVlemPb6BaV_nmsk6VaNR43ZvcaeTg5vh-exRfXp-fDw4tYiZz1MRaF5opprrMiE4gl0KJkmEINCGUNgHkqyoSGIggMrs4hKbhCihg4ijWyM-3bOfsxRt_LkfEam0a1aMdeZjlAWBkC3J1C7az3DmvZOTNSbiIZlT8hyr8Qg92aNR2XI6zmcpZaANszoLxWTe1Uq42fO2AJQM6Di6fO-B4__-rKvcsMBKTy_uZOPl3lN5fPBZMw76u0D_OMXRuy-2fAbxFpkuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68775557</pqid></control><display><type>article</type><title>Exploring the Scope of the 29G12 Antibody Catalyzed 1,3-Dipolar Cycloaddition Reaction</title><source>MEDLINE</source><source>ACS Publications</source><creator>Toker, Jonathan D ; Tremblay, Martin R ; Yli-Kauhaluoma, Jari ; Wentworth, Anita D ; Zhou, Bin ; Wentworth, Paul ; Janda, Kim D</creator><creatorcontrib>Toker, Jonathan D ; Tremblay, Martin R ; Yli-Kauhaluoma, Jari ; Wentworth, Anita D ; Zhou, Bin ; Wentworth, Paul ; Janda, Kim D</creatorcontrib><description>29G12 is a murine monoclonal antibody programmed to catalyze the regio- and enantioselective 1,3-dipolar cycloaddition reaction between 4-acetamidobenzonitrile N-oxide 1a and N,N-dimethylacrylamide 2a (Toker, J. D.; Wentworth, P., Jr.; Hu, Y.; Houk, K. N.; Janda, K. D. J. Am. Chem. Soc. 2000, 122, 3244). Given the unique nature of 29G12 as a protein biocatalyst for this chemical reaction, we have investigated both the substrate specificity and mechanistic parameters of the 29G12-catalyzed process. These studies have shown that while 29G12 is specific for its dipole substrate 1a, the antibody is highly promiscuous with respect to the dipolarophiles it can process. 29G12 accepts a bulky hydrophobic dipolarophile cosubstrate, with rates of product formation up to 70-fold faster than with the original substrate 2a. In all cases, the respective isoxazoline products are produced with exquisite regio- and stereochemical control (78−98% ee). Comparison between the steady-state kinetic parameters from the 29G12-catalyzed reaction of 1a with the most efficient versus the original dipolarophile cosubstrate (2m and 2a, respectively), reveals that while the effective molarities (EM)s are almost identical (EM( 2m ) 26 M; EM( 2a ) 23 M), the affinity of 29G12 for the larger dipolarophile 2m is more than 1 order of magnitude higher than for 2a [K m(2m) 0.44 ± 0.04 mM; K m(2a) 5.8 ± 0.4 mM]. Furthermore, when 2m is the cosubstrate, the affinity of 29G12 for its dipole 1a is also greatly improved [K m(1a) 0.82 ± 0.1 mM compared to K m(1a) 3.4 ± 0.4 mM when 2a is the cosubstrate]. An analysis of the temperature dependence of the 29G12-catalyzed reaction between 1a and 2m reveals that catalysis is achieved via a decrease in enthalpy of activation (ΔΔH ⧧ 4.4 kcal mol-1) and involves a large increase in the entropy of activation (ΔΔS ⧧ 10.4 eu). The improved affinity of 29G12 for the nitrile oxide 1a in the presence of 2m, coupled with the increase in ΔΔS ⧧ during the 29G12-catalyzed reaction between 1a and 2m supports the notion of a structural reorganization of the active site to facilitate this antibody-catalyzed reaction.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/jo050410b</identifier><identifier>PMID: 16277300</identifier><identifier>CODEN: JOCEAH</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acrylamides ; Amino Acid Substitution ; Animals ; Antibodies, Monoclonal - chemistry ; Catalysis ; Catalysts: preparations and properties ; Chemistry ; Cyclization ; Exact sciences and technology ; General and physical chemistry ; Isoxazoles - chemistry ; Kinetics and mechanisms ; Mice ; Organic chemistry ; Reactivity and mechanisms ; Stereoisomerism ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Thermodynamics</subject><ispartof>Journal of organic chemistry, 2005-09, Vol.70 (20), p.7810-7815</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-e99c2a1c2c6963eeb709b1e57f7e7bf77e853b4096373e1c2f87492ae0ee3eee3</citedby><cites>FETCH-LOGICAL-a381t-e99c2a1c2c6963eeb709b1e57f7e7bf77e853b4096373e1c2f87492ae0ee3eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jo050410b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jo050410b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17147782$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16277300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toker, Jonathan D</creatorcontrib><creatorcontrib>Tremblay, Martin R</creatorcontrib><creatorcontrib>Yli-Kauhaluoma, Jari</creatorcontrib><creatorcontrib>Wentworth, Anita D</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><creatorcontrib>Wentworth, Paul</creatorcontrib><creatorcontrib>Janda, Kim D</creatorcontrib><title>Exploring the Scope of the 29G12 Antibody Catalyzed 1,3-Dipolar Cycloaddition Reaction</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>29G12 is a murine monoclonal antibody programmed to catalyze the regio- and enantioselective 1,3-dipolar cycloaddition reaction between 4-acetamidobenzonitrile N-oxide 1a and N,N-dimethylacrylamide 2a (Toker, J. D.; Wentworth, P., Jr.; Hu, Y.; Houk, K. N.; Janda, K. D. J. Am. Chem. Soc. 2000, 122, 3244). Given the unique nature of 29G12 as a protein biocatalyst for this chemical reaction, we have investigated both the substrate specificity and mechanistic parameters of the 29G12-catalyzed process. These studies have shown that while 29G12 is specific for its dipole substrate 1a, the antibody is highly promiscuous with respect to the dipolarophiles it can process. 29G12 accepts a bulky hydrophobic dipolarophile cosubstrate, with rates of product formation up to 70-fold faster than with the original substrate 2a. In all cases, the respective isoxazoline products are produced with exquisite regio- and stereochemical control (78−98% ee). Comparison between the steady-state kinetic parameters from the 29G12-catalyzed reaction of 1a with the most efficient versus the original dipolarophile cosubstrate (2m and 2a, respectively), reveals that while the effective molarities (EM)s are almost identical (EM( 2m ) 26 M; EM( 2a ) 23 M), the affinity of 29G12 for the larger dipolarophile 2m is more than 1 order of magnitude higher than for 2a [K m(2m) 0.44 ± 0.04 mM; K m(2a) 5.8 ± 0.4 mM]. Furthermore, when 2m is the cosubstrate, the affinity of 29G12 for its dipole 1a is also greatly improved [K m(1a) 0.82 ± 0.1 mM compared to K m(1a) 3.4 ± 0.4 mM when 2a is the cosubstrate]. An analysis of the temperature dependence of the 29G12-catalyzed reaction between 1a and 2m reveals that catalysis is achieved via a decrease in enthalpy of activation (ΔΔH ⧧ 4.4 kcal mol-1) and involves a large increase in the entropy of activation (ΔΔS ⧧ 10.4 eu). The improved affinity of 29G12 for the nitrile oxide 1a in the presence of 2m, coupled with the increase in ΔΔS ⧧ during the 29G12-catalyzed reaction between 1a and 2m supports the notion of a structural reorganization of the active site to facilitate this antibody-catalyzed reaction.</description><subject>Acrylamides</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Cyclization</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Isoxazoles - chemistry</subject><subject>Kinetics and mechanisms</subject><subject>Mice</subject><subject>Organic chemistry</subject><subject>Reactivity and mechanisms</subject><subject>Stereoisomerism</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Thermodynamics</subject><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0EtLxDAQB_Agiq6Pg19AelEQrObRdtqjrE_whS_ES0jTqUa7TU264Prpje7iXswlCfNjmPkTssnoPqOcHbxZmtKE0XKBDFjKaZwVNFkkA0o5jwXPxApZ9f6NhpOm6TJZYRkHEJQOyOPxZ9dYZ9qXqH_F6E7bDiNb_354ccp4dNj2prTVJBqqXjWTL6witifiI9PZRrloONGNVVVlemPb6BaV_nmsk6VaNR43ZvcaeTg5vh-exRfXp-fDw4tYiZz1MRaF5opprrMiE4gl0KJkmEINCGUNgHkqyoSGIggMrs4hKbhCihg4ijWyM-3bOfsxRt_LkfEam0a1aMdeZjlAWBkC3J1C7az3DmvZOTNSbiIZlT8hyr8Qg92aNR2XI6zmcpZaANszoLxWTe1Uq42fO2AJQM6Di6fO-B4__-rKvcsMBKTy_uZOPl3lN5fPBZMw76u0D_OMXRuy-2fAbxFpkuw</recordid><startdate>20050930</startdate><enddate>20050930</enddate><creator>Toker, Jonathan D</creator><creator>Tremblay, Martin R</creator><creator>Yli-Kauhaluoma, Jari</creator><creator>Wentworth, Anita D</creator><creator>Zhou, Bin</creator><creator>Wentworth, Paul</creator><creator>Janda, Kim D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050930</creationdate><title>Exploring the Scope of the 29G12 Antibody Catalyzed 1,3-Dipolar Cycloaddition Reaction</title><author>Toker, Jonathan D ; Tremblay, Martin R ; Yli-Kauhaluoma, Jari ; Wentworth, Anita D ; Zhou, Bin ; Wentworth, Paul ; Janda, Kim D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-e99c2a1c2c6963eeb709b1e57f7e7bf77e853b4096373e1c2f87492ae0ee3eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acrylamides</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Cyclization</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Isoxazoles - chemistry</topic><topic>Kinetics and mechanisms</topic><topic>Mice</topic><topic>Organic chemistry</topic><topic>Reactivity and mechanisms</topic><topic>Stereoisomerism</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toker, Jonathan D</creatorcontrib><creatorcontrib>Tremblay, Martin R</creatorcontrib><creatorcontrib>Yli-Kauhaluoma, Jari</creatorcontrib><creatorcontrib>Wentworth, Anita D</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><creatorcontrib>Wentworth, Paul</creatorcontrib><creatorcontrib>Janda, Kim D</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toker, Jonathan D</au><au>Tremblay, Martin R</au><au>Yli-Kauhaluoma, Jari</au><au>Wentworth, Anita D</au><au>Zhou, Bin</au><au>Wentworth, Paul</au><au>Janda, Kim D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Scope of the 29G12 Antibody Catalyzed 1,3-Dipolar Cycloaddition Reaction</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2005-09-30</date><risdate>2005</risdate><volume>70</volume><issue>20</issue><spage>7810</spage><epage>7815</epage><pages>7810-7815</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><coden>JOCEAH</coden><abstract>29G12 is a murine monoclonal antibody programmed to catalyze the regio- and enantioselective 1,3-dipolar cycloaddition reaction between 4-acetamidobenzonitrile N-oxide 1a and N,N-dimethylacrylamide 2a (Toker, J. D.; Wentworth, P., Jr.; Hu, Y.; Houk, K. N.; Janda, K. D. J. Am. Chem. Soc. 2000, 122, 3244). Given the unique nature of 29G12 as a protein biocatalyst for this chemical reaction, we have investigated both the substrate specificity and mechanistic parameters of the 29G12-catalyzed process. These studies have shown that while 29G12 is specific for its dipole substrate 1a, the antibody is highly promiscuous with respect to the dipolarophiles it can process. 29G12 accepts a bulky hydrophobic dipolarophile cosubstrate, with rates of product formation up to 70-fold faster than with the original substrate 2a. In all cases, the respective isoxazoline products are produced with exquisite regio- and stereochemical control (78−98% ee). Comparison between the steady-state kinetic parameters from the 29G12-catalyzed reaction of 1a with the most efficient versus the original dipolarophile cosubstrate (2m and 2a, respectively), reveals that while the effective molarities (EM)s are almost identical (EM( 2m ) 26 M; EM( 2a ) 23 M), the affinity of 29G12 for the larger dipolarophile 2m is more than 1 order of magnitude higher than for 2a [K m(2m) 0.44 ± 0.04 mM; K m(2a) 5.8 ± 0.4 mM]. Furthermore, when 2m is the cosubstrate, the affinity of 29G12 for its dipole 1a is also greatly improved [K m(1a) 0.82 ± 0.1 mM compared to K m(1a) 3.4 ± 0.4 mM when 2a is the cosubstrate]. An analysis of the temperature dependence of the 29G12-catalyzed reaction between 1a and 2m reveals that catalysis is achieved via a decrease in enthalpy of activation (ΔΔH ⧧ 4.4 kcal mol-1) and involves a large increase in the entropy of activation (ΔΔS ⧧ 10.4 eu). The improved affinity of 29G12 for the nitrile oxide 1a in the presence of 2m, coupled with the increase in ΔΔS ⧧ during the 29G12-catalyzed reaction between 1a and 2m supports the notion of a structural reorganization of the active site to facilitate this antibody-catalyzed reaction.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16277300</pmid><doi>10.1021/jo050410b</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3263 |
ispartof | Journal of organic chemistry, 2005-09, Vol.70 (20), p.7810-7815 |
issn | 0022-3263 1520-6904 |
language | eng |
recordid | cdi_proquest_miscellaneous_68775557 |
source | MEDLINE; ACS Publications |
subjects | Acrylamides Amino Acid Substitution Animals Antibodies, Monoclonal - chemistry Catalysis Catalysts: preparations and properties Chemistry Cyclization Exact sciences and technology General and physical chemistry Isoxazoles - chemistry Kinetics and mechanisms Mice Organic chemistry Reactivity and mechanisms Stereoisomerism Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Thermodynamics |
title | Exploring the Scope of the 29G12 Antibody Catalyzed 1,3-Dipolar Cycloaddition Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Scope%20of%20the%2029G12%20Antibody%20Catalyzed%201,3-Dipolar%20Cycloaddition%20Reaction&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Toker,%20Jonathan%20D&rft.date=2005-09-30&rft.volume=70&rft.issue=20&rft.spage=7810&rft.epage=7815&rft.pages=7810-7815&rft.issn=0022-3263&rft.eissn=1520-6904&rft.coden=JOCEAH&rft_id=info:doi/10.1021/jo050410b&rft_dat=%3Cproquest_cross%3E68775557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68775557&rft_id=info:pmid/16277300&rfr_iscdi=true |