Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin

We investigated the interaction between norepinephrine (NE) and orexin/hypocretin (Hcrt) in the control of sleep behavior and narcoleptic symptoms by creating mice that were deficient in both neurotransmitters. Mice with a targeted disruption of the dopamine β‐hydroxylase (Dbh) gene (deficient in NE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes, brain and behavior brain and behavior, 2006-08, Vol.5 (6), p.451-457
Hauptverfasser: Hunsley, M. S., Curtis, W. R., Palmiter, R. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 6
container_start_page 451
container_title Genes, brain and behavior
container_volume 5
creator Hunsley, M. S.
Curtis, W. R.
Palmiter, R. D.
description We investigated the interaction between norepinephrine (NE) and orexin/hypocretin (Hcrt) in the control of sleep behavior and narcoleptic symptoms by creating mice that were deficient in both neurotransmitters. Mice with a targeted disruption of the dopamine β‐hydroxylase (Dbh) gene (deficient in NE and epinephrine) or the Hcrt gene were bred to generate double knockouts (DKOs), each single KO (Dbh‐KO and Hcrt‐KO), and control mice. The duration of wake, non‐rapid eye movement (NREM) and REM sleep were monitored by electroencephalogram (EEG)/electromyogram (EMG) recording over a 24‐h period, and the occurrence of behavioral arrests was monitored by video/EEG recording for 4 h. Overall, there was very little interaction between the two genes; for most parameters that were measured, the DKO mice resembled either Dbh‐KO or Hcrt‐KO mice. REM sleep was increased in both DKO and Hcrt‐KO mice at night relative to the other groups, but DKO mice had significantly more REM sleep during the day than the other three groups. Sleep latency in response to saline or amphetamine injections was reduced in Dbh‐KO and DKO mice relative to other groups. Behavioral arrests, that are frequent in Hcrt‐KO mice, were not exacerbated in DKO mice.
doi_str_mv 10.1111/j.1601-183X.2005.00179.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_68771068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68771068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5029-f5db9845064f8c38afa32523c2933935a1f52ff328c3eb9446f77657eefcd1b3</originalsourceid><addsrcrecordid>eNqNkE1PAjEQhhujEfz4C2ZP3lj6sR9t4kWIogmJFxK9Nd3uVArL7touAv_eXSB41B6mk8zzziQPQgHBIWnfcBGSBJMB4ewjpBjHIcYkFeH2DPVPg_NTH_EeuvJ-0UGMk0vUI4mgjESij95HMFfftnKqCFSZB74AqIcbtYRAz5VTugFnfWO1DyoTrKyGoFB6acvPoKwc1LaEeu7auk_Pd3WlHTS2vEEXRhUebo__NZo9P83GL4Pp2-R1_Dgd6BhTMTBxngkexTiJDNeMK6MYjSnTVDAmWKyIiakxjLZDyEQUJSZNkzgFMDonGbtG94e1tau-1uAbubJeQ1GoEqq1lwlPU4IT_idIBOOcRmkL8gOoXeW9AyNrZ1fK7STBspMvF7LzKjvHspMv9_Llto3eHW-ssxXkv8Gj7RZ4OAAbW8Du34vlZDRqG_YDSAyTqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19388247</pqid></control><display><type>article</type><title>Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin</title><source>Wiley-Blackwell Open Access Titles</source><creator>Hunsley, M. S. ; Curtis, W. R. ; Palmiter, R. D.</creator><creatorcontrib>Hunsley, M. S. ; Curtis, W. R. ; Palmiter, R. D.</creatorcontrib><description>We investigated the interaction between norepinephrine (NE) and orexin/hypocretin (Hcrt) in the control of sleep behavior and narcoleptic symptoms by creating mice that were deficient in both neurotransmitters. Mice with a targeted disruption of the dopamine β‐hydroxylase (Dbh) gene (deficient in NE and epinephrine) or the Hcrt gene were bred to generate double knockouts (DKOs), each single KO (Dbh‐KO and Hcrt‐KO), and control mice. The duration of wake, non‐rapid eye movement (NREM) and REM sleep were monitored by electroencephalogram (EEG)/electromyogram (EMG) recording over a 24‐h period, and the occurrence of behavioral arrests was monitored by video/EEG recording for 4 h. Overall, there was very little interaction between the two genes; for most parameters that were measured, the DKO mice resembled either Dbh‐KO or Hcrt‐KO mice. REM sleep was increased in both DKO and Hcrt‐KO mice at night relative to the other groups, but DKO mice had significantly more REM sleep during the day than the other three groups. Sleep latency in response to saline or amphetamine injections was reduced in Dbh‐KO and DKO mice relative to other groups. Behavioral arrests, that are frequent in Hcrt‐KO mice, were not exacerbated in DKO mice.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/j.1601-183X.2005.00179.x</identifier><identifier>PMID: 16923149</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amphetamine - pharmacology ; Animals ; Behavior, Animal - drug effects ; Behavior, Animal - physiology ; Brain - drug effects ; Brain - metabolism ; Brain - physiopathology ; Dopamine Agonists - pharmacology ; Electroencephalography ; Electromyography ; Epinephrine - genetics ; Female ; Genetic Predisposition to Disease - genetics ; Hypocretin ; Intracellular Signaling Peptides and Proteins - genetics ; knockout mice ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; narcolepsy ; Neuropeptides - genetics ; norepinephrine ; orexin ; Orexins ; Reaction Time - drug effects ; Reaction Time - genetics ; Sleep - drug effects ; Sleep - genetics ; sleep latency ; Sleep Wake Disorders - genetics ; Sleep Wake Disorders - metabolism ; Sleep Wake Disorders - physiopathology ; Sleep, REM - drug effects ; Sleep, REM - genetics ; Wakefulness - drug effects ; Wakefulness - genetics</subject><ispartof>Genes, brain and behavior, 2006-08, Vol.5 (6), p.451-457</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5029-f5db9845064f8c38afa32523c2933935a1f52ff328c3eb9446f77657eefcd1b3</citedby><cites>FETCH-LOGICAL-c5029-f5db9845064f8c38afa32523c2933935a1f52ff328c3eb9446f77657eefcd1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1601-183X.2005.00179.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1601-183X.2005.00179.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1601-183X.2005.00179.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16923149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunsley, M. S.</creatorcontrib><creatorcontrib>Curtis, W. R.</creatorcontrib><creatorcontrib>Palmiter, R. D.</creatorcontrib><title>Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>We investigated the interaction between norepinephrine (NE) and orexin/hypocretin (Hcrt) in the control of sleep behavior and narcoleptic symptoms by creating mice that were deficient in both neurotransmitters. Mice with a targeted disruption of the dopamine β‐hydroxylase (Dbh) gene (deficient in NE and epinephrine) or the Hcrt gene were bred to generate double knockouts (DKOs), each single KO (Dbh‐KO and Hcrt‐KO), and control mice. The duration of wake, non‐rapid eye movement (NREM) and REM sleep were monitored by electroencephalogram (EEG)/electromyogram (EMG) recording over a 24‐h period, and the occurrence of behavioral arrests was monitored by video/EEG recording for 4 h. Overall, there was very little interaction between the two genes; for most parameters that were measured, the DKO mice resembled either Dbh‐KO or Hcrt‐KO mice. REM sleep was increased in both DKO and Hcrt‐KO mice at night relative to the other groups, but DKO mice had significantly more REM sleep during the day than the other three groups. Sleep latency in response to saline or amphetamine injections was reduced in Dbh‐KO and DKO mice relative to other groups. Behavioral arrests, that are frequent in Hcrt‐KO mice, were not exacerbated in DKO mice.</description><subject>Amphetamine - pharmacology</subject><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Behavior, Animal - physiology</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Dopamine Agonists - pharmacology</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Epinephrine - genetics</subject><subject>Female</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Hypocretin</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>knockout mice</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>narcolepsy</subject><subject>Neuropeptides - genetics</subject><subject>norepinephrine</subject><subject>orexin</subject><subject>Orexins</subject><subject>Reaction Time - drug effects</subject><subject>Reaction Time - genetics</subject><subject>Sleep - drug effects</subject><subject>Sleep - genetics</subject><subject>sleep latency</subject><subject>Sleep Wake Disorders - genetics</subject><subject>Sleep Wake Disorders - metabolism</subject><subject>Sleep Wake Disorders - physiopathology</subject><subject>Sleep, REM - drug effects</subject><subject>Sleep, REM - genetics</subject><subject>Wakefulness - drug effects</subject><subject>Wakefulness - genetics</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1PAjEQhhujEfz4C2ZP3lj6sR9t4kWIogmJFxK9Nd3uVArL7touAv_eXSB41B6mk8zzziQPQgHBIWnfcBGSBJMB4ewjpBjHIcYkFeH2DPVPg_NTH_EeuvJ-0UGMk0vUI4mgjESij95HMFfftnKqCFSZB74AqIcbtYRAz5VTugFnfWO1DyoTrKyGoFB6acvPoKwc1LaEeu7auk_Pd3WlHTS2vEEXRhUebo__NZo9P83GL4Pp2-R1_Dgd6BhTMTBxngkexTiJDNeMK6MYjSnTVDAmWKyIiakxjLZDyEQUJSZNkzgFMDonGbtG94e1tau-1uAbubJeQ1GoEqq1lwlPU4IT_idIBOOcRmkL8gOoXeW9AyNrZ1fK7STBspMvF7LzKjvHspMv9_Llto3eHW-ssxXkv8Gj7RZ4OAAbW8Du34vlZDRqG_YDSAyTqg</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Hunsley, M. S.</creator><creator>Curtis, W. R.</creator><creator>Palmiter, R. D.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200608</creationdate><title>Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin</title><author>Hunsley, M. S. ; Curtis, W. R. ; Palmiter, R. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5029-f5db9845064f8c38afa32523c2933935a1f52ff328c3eb9446f77657eefcd1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amphetamine - pharmacology</topic><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Behavior, Animal - physiology</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Dopamine Agonists - pharmacology</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Epinephrine - genetics</topic><topic>Female</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Hypocretin</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>knockout mice</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>narcolepsy</topic><topic>Neuropeptides - genetics</topic><topic>norepinephrine</topic><topic>orexin</topic><topic>Orexins</topic><topic>Reaction Time - drug effects</topic><topic>Reaction Time - genetics</topic><topic>Sleep - drug effects</topic><topic>Sleep - genetics</topic><topic>sleep latency</topic><topic>Sleep Wake Disorders - genetics</topic><topic>Sleep Wake Disorders - metabolism</topic><topic>Sleep Wake Disorders - physiopathology</topic><topic>Sleep, REM - drug effects</topic><topic>Sleep, REM - genetics</topic><topic>Wakefulness - drug effects</topic><topic>Wakefulness - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunsley, M. S.</creatorcontrib><creatorcontrib>Curtis, W. R.</creatorcontrib><creatorcontrib>Palmiter, R. D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hunsley, M. S.</au><au>Curtis, W. R.</au><au>Palmiter, R. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2006-08</date><risdate>2006</risdate><volume>5</volume><issue>6</issue><spage>451</spage><epage>457</epage><pages>451-457</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><abstract>We investigated the interaction between norepinephrine (NE) and orexin/hypocretin (Hcrt) in the control of sleep behavior and narcoleptic symptoms by creating mice that were deficient in both neurotransmitters. Mice with a targeted disruption of the dopamine β‐hydroxylase (Dbh) gene (deficient in NE and epinephrine) or the Hcrt gene were bred to generate double knockouts (DKOs), each single KO (Dbh‐KO and Hcrt‐KO), and control mice. The duration of wake, non‐rapid eye movement (NREM) and REM sleep were monitored by electroencephalogram (EEG)/electromyogram (EMG) recording over a 24‐h period, and the occurrence of behavioral arrests was monitored by video/EEG recording for 4 h. Overall, there was very little interaction between the two genes; for most parameters that were measured, the DKO mice resembled either Dbh‐KO or Hcrt‐KO mice. REM sleep was increased in both DKO and Hcrt‐KO mice at night relative to the other groups, but DKO mice had significantly more REM sleep during the day than the other three groups. Sleep latency in response to saline or amphetamine injections was reduced in Dbh‐KO and DKO mice relative to other groups. Behavioral arrests, that are frequent in Hcrt‐KO mice, were not exacerbated in DKO mice.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16923149</pmid><doi>10.1111/j.1601-183X.2005.00179.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1601-1848
ispartof Genes, brain and behavior, 2006-08, Vol.5 (6), p.451-457
issn 1601-1848
1601-183X
language eng
recordid cdi_proquest_miscellaneous_68771068
source Wiley-Blackwell Open Access Titles
subjects Amphetamine - pharmacology
Animals
Behavior, Animal - drug effects
Behavior, Animal - physiology
Brain - drug effects
Brain - metabolism
Brain - physiopathology
Dopamine Agonists - pharmacology
Electroencephalography
Electromyography
Epinephrine - genetics
Female
Genetic Predisposition to Disease - genetics
Hypocretin
Intracellular Signaling Peptides and Proteins - genetics
knockout mice
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
narcolepsy
Neuropeptides - genetics
norepinephrine
orexin
Orexins
Reaction Time - drug effects
Reaction Time - genetics
Sleep - drug effects
Sleep - genetics
sleep latency
Sleep Wake Disorders - genetics
Sleep Wake Disorders - metabolism
Sleep Wake Disorders - physiopathology
Sleep, REM - drug effects
Sleep, REM - genetics
Wakefulness - drug effects
Wakefulness - genetics
title Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20and%20sleep/wake%20characteristics%20of%20mice%20lacking%20norepinephrine%20and%20hypocretin&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Hunsley,%20M.%20S.&rft.date=2006-08&rft.volume=5&rft.issue=6&rft.spage=451&rft.epage=457&rft.pages=451-457&rft.issn=1601-1848&rft.eissn=1601-183X&rft_id=info:doi/10.1111/j.1601-183X.2005.00179.x&rft_dat=%3Cproquest_24P%3E68771068%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19388247&rft_id=info:pmid/16923149&rfr_iscdi=true