Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples
A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of spec...
Gespeichert in:
Veröffentlicht in: | Biometrics 2006-06, Vol.62 (2), p.361-371 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | 2 |
container_start_page | 361 |
container_title | Biometrics |
container_volume | 62 |
creator | Chao, Anne Chazdon, Robin L Colwell, Robert K Shen, Tsung‐Jen |
description | A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic derivation for any incidence‐based index that is symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous (i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further extended to formulate abundance‐based indices. Thus any symmetric and homogeneous incidence index can be easily modified to an abundance‐type version. Applying the Laplace approximation formulas, we propose estimators that adjust for the effect of unseen shared species on our abundance‐based indices. Simulation results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices are briefly discussed. |
doi_str_mv | 10.1111/j.1541-0420.2005.00489.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68767952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695855</jstor_id><sourcerecordid>3695855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5329-e86a17c9bf93ccf5b1ee86eef2e90b73d05ff166a0872d95bbb492da09adc1073</originalsourceid><addsrcrecordid>eNqNUkuP0zAQthCI7S78AwQRB24JfsROfODQXe2jaGER3WoRF8txJqxLHsVORHvjJ_Ab-SU4pCoSJyxZHs_30HjGCEUEJySs1-uE8JTEOKU4oRjzBOM0l8n2AZodgIdohjEWMUvJpyN07P06XCXH9DE6IkKSXGI8Q8W8GNpStwZ-_fh5qj2U0dI2ttbO9rto0ZbWgI90W0a392BddO572-jedm10dw_tmHUQzcNetR5CYrkBY4PEhlA3mxr8E_So0rWHp_vzBK0uzm_PruLrm8vF2fw6NpxRGUMuNMmMLCrJjKl4QSCkACoKEhcZKzGvKiKExnlGS8mLokglLTWWujQEZ-wEvZp8N677NoDvVWO9gbrWLXSDVyLPRCY5DcSX_xDX3eDaUJuihOWMi3R0yyeScZ33Diq1ceHlbqcIVuMQ1FqNvVZjr9U4BPVnCGobpM_3_kPRQPlXuO96ILyZCN9tDbv_Nlani5t3IQr6Z5N-7fvOHfRMSJ5zHuB4gq3vYXuAtfuqRMYyru7eX6oPb9nnj-IqVXngv5j4le6U_uKsV6slxYSP_0fIVLDfJk630g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213835647</pqid></control><display><type>article</type><title>Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Chao, Anne ; Chazdon, Robin L ; Colwell, Robert K ; Shen, Tsung‐Jen</creator><creatorcontrib>Chao, Anne ; Chazdon, Robin L ; Colwell, Robert K ; Shen, Tsung‐Jen</creatorcontrib><description>A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic derivation for any incidence‐based index that is symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous (i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further extended to formulate abundance‐based indices. Thus any symmetric and homogeneous incidence index can be easily modified to an abundance‐type version. Applying the Laplace approximation formulas, we propose estimators that adjust for the effect of unseen shared species on our abundance‐based indices. Simulation results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices are briefly discussed.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00489.x</identifier><identifier>PMID: 16918900</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Beta diversity ; Bias ; Biodiversity ; Biometrics ; Biometry ; Estimation bias ; Estimators ; Flowers & plants ; Forest ecology ; Forest succession ; Models, Statistical ; Old growth forests ; probability analysis ; Rainforests ; Research methodology ; Sampling bias ; Saplings ; Seedlings ; Simulation ; Species ; species diversity ; Species overlap ; Species Specificity ; Trees ; Tropical Climate ; tropical forests</subject><ispartof>Biometrics, 2006-06, Vol.62 (2), p.361-371</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2005, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5329-e86a17c9bf93ccf5b1ee86eef2e90b73d05ff166a0872d95bbb492da09adc1073</citedby><cites>FETCH-LOGICAL-c5329-e86a17c9bf93ccf5b1ee86eef2e90b73d05ff166a0872d95bbb492da09adc1073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695855$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695855$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16918900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chao, Anne</creatorcontrib><creatorcontrib>Chazdon, Robin L</creatorcontrib><creatorcontrib>Colwell, Robert K</creatorcontrib><creatorcontrib>Shen, Tsung‐Jen</creatorcontrib><title>Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic derivation for any incidence‐based index that is symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous (i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further extended to formulate abundance‐based indices. Thus any symmetric and homogeneous incidence index can be easily modified to an abundance‐type version. Applying the Laplace approximation formulas, we propose estimators that adjust for the effect of unseen shared species on our abundance‐based indices. Simulation results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices are briefly discussed.</description><subject>Beta diversity</subject><subject>Bias</subject><subject>Biodiversity</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Flowers & plants</subject><subject>Forest ecology</subject><subject>Forest succession</subject><subject>Models, Statistical</subject><subject>Old growth forests</subject><subject>probability analysis</subject><subject>Rainforests</subject><subject>Research methodology</subject><subject>Sampling bias</subject><subject>Saplings</subject><subject>Seedlings</subject><subject>Simulation</subject><subject>Species</subject><subject>species diversity</subject><subject>Species overlap</subject><subject>Species Specificity</subject><subject>Trees</subject><subject>Tropical Climate</subject><subject>tropical forests</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUkuP0zAQthCI7S78AwQRB24JfsROfODQXe2jaGER3WoRF8txJqxLHsVORHvjJ_Ab-SU4pCoSJyxZHs_30HjGCEUEJySs1-uE8JTEOKU4oRjzBOM0l8n2AZodgIdohjEWMUvJpyN07P06XCXH9DE6IkKSXGI8Q8W8GNpStwZ-_fh5qj2U0dI2ttbO9rto0ZbWgI90W0a392BddO572-jedm10dw_tmHUQzcNetR5CYrkBY4PEhlA3mxr8E_So0rWHp_vzBK0uzm_PruLrm8vF2fw6NpxRGUMuNMmMLCrJjKl4QSCkACoKEhcZKzGvKiKExnlGS8mLokglLTWWujQEZ-wEvZp8N677NoDvVWO9gbrWLXSDVyLPRCY5DcSX_xDX3eDaUJuihOWMi3R0yyeScZ33Diq1ceHlbqcIVuMQ1FqNvVZjr9U4BPVnCGobpM_3_kPRQPlXuO96ILyZCN9tDbv_Nlani5t3IQr6Z5N-7fvOHfRMSJ5zHuB4gq3vYXuAtfuqRMYyru7eX6oPb9nnj-IqVXngv5j4le6U_uKsV6slxYSP_0fIVLDfJk630g</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Chao, Anne</creator><creator>Chazdon, Robin L</creator><creator>Colwell, Robert K</creator><creator>Shen, Tsung‐Jen</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200606</creationdate><title>Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples</title><author>Chao, Anne ; Chazdon, Robin L ; Colwell, Robert K ; Shen, Tsung‐Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5329-e86a17c9bf93ccf5b1ee86eef2e90b73d05ff166a0872d95bbb492da09adc1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Beta diversity</topic><topic>Bias</topic><topic>Biodiversity</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Flowers & plants</topic><topic>Forest ecology</topic><topic>Forest succession</topic><topic>Models, Statistical</topic><topic>Old growth forests</topic><topic>probability analysis</topic><topic>Rainforests</topic><topic>Research methodology</topic><topic>Sampling bias</topic><topic>Saplings</topic><topic>Seedlings</topic><topic>Simulation</topic><topic>Species</topic><topic>species diversity</topic><topic>Species overlap</topic><topic>Species Specificity</topic><topic>Trees</topic><topic>Tropical Climate</topic><topic>tropical forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chao, Anne</creatorcontrib><creatorcontrib>Chazdon, Robin L</creatorcontrib><creatorcontrib>Colwell, Robert K</creatorcontrib><creatorcontrib>Shen, Tsung‐Jen</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chao, Anne</au><au>Chazdon, Robin L</au><au>Colwell, Robert K</au><au>Shen, Tsung‐Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-06</date><risdate>2006</risdate><volume>62</volume><issue>2</issue><spage>361</spage><epage>371</epage><pages>361-371</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic derivation for any incidence‐based index that is symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous (i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further extended to formulate abundance‐based indices. Thus any symmetric and homogeneous incidence index can be easily modified to an abundance‐type version. Applying the Laplace approximation formulas, we propose estimators that adjust for the effect of unseen shared species on our abundance‐based indices. Simulation results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices are briefly discussed.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16918900</pmid><doi>10.1111/j.1541-0420.2005.00489.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2006-06, Vol.62 (2), p.361-371 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_68767952 |
source | MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Beta diversity Bias Biodiversity Biometrics Biometry Estimation bias Estimators Flowers & plants Forest ecology Forest succession Models, Statistical Old growth forests probability analysis Rainforests Research methodology Sampling bias Saplings Seedlings Simulation Species species diversity Species overlap Species Specificity Trees Tropical Climate tropical forests |
title | Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abundance%E2%80%90Based%20Similarity%20Indices%20and%20Their%20Estimation%20When%20There%20Are%20Unseen%20Species%20in%20Samples&rft.jtitle=Biometrics&rft.au=Chao,%20Anne&rft.date=2006-06&rft.volume=62&rft.issue=2&rft.spage=361&rft.epage=371&rft.pages=361-371&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00489.x&rft_dat=%3Cjstor_proqu%3E3695855%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213835647&rft_id=info:pmid/16918900&rft_jstor_id=3695855&rfr_iscdi=true |