Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples

A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2006-06, Vol.62 (2), p.361-371
Hauptverfasser: Chao, Anne, Chazdon, Robin L, Colwell, Robert K, Shen, Tsung‐Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 2
container_start_page 361
container_title Biometrics
container_volume 62
creator Chao, Anne
Chazdon, Robin L
Colwell, Robert K
Shen, Tsung‐Jen
description A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic derivation for any incidence‐based index that is symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous (i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further extended to formulate abundance‐based indices. Thus any symmetric and homogeneous incidence index can be easily modified to an abundance‐type version. Applying the Laplace approximation formulas, we propose estimators that adjust for the effect of unseen shared species on our abundance‐based indices. Simulation results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices are briefly discussed.
doi_str_mv 10.1111/j.1541-0420.2005.00489.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68767952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695855</jstor_id><sourcerecordid>3695855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5329-e86a17c9bf93ccf5b1ee86eef2e90b73d05ff166a0872d95bbb492da09adc1073</originalsourceid><addsrcrecordid>eNqNUkuP0zAQthCI7S78AwQRB24JfsROfODQXe2jaGER3WoRF8txJqxLHsVORHvjJ_Ab-SU4pCoSJyxZHs_30HjGCEUEJySs1-uE8JTEOKU4oRjzBOM0l8n2AZodgIdohjEWMUvJpyN07P06XCXH9DE6IkKSXGI8Q8W8GNpStwZ-_fh5qj2U0dI2ttbO9rto0ZbWgI90W0a392BddO572-jedm10dw_tmHUQzcNetR5CYrkBY4PEhlA3mxr8E_So0rWHp_vzBK0uzm_PruLrm8vF2fw6NpxRGUMuNMmMLCrJjKl4QSCkACoKEhcZKzGvKiKExnlGS8mLokglLTWWujQEZ-wEvZp8N677NoDvVWO9gbrWLXSDVyLPRCY5DcSX_xDX3eDaUJuihOWMi3R0yyeScZ33Diq1ceHlbqcIVuMQ1FqNvVZjr9U4BPVnCGobpM_3_kPRQPlXuO96ILyZCN9tDbv_Nlani5t3IQr6Z5N-7fvOHfRMSJ5zHuB4gq3vYXuAtfuqRMYyru7eX6oPb9nnj-IqVXngv5j4le6U_uKsV6slxYSP_0fIVLDfJk630g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213835647</pqid></control><display><type>article</type><title>Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Chao, Anne ; Chazdon, Robin L ; Colwell, Robert K ; Shen, Tsung‐Jen</creator><creatorcontrib>Chao, Anne ; Chazdon, Robin L ; Colwell, Robert K ; Shen, Tsung‐Jen</creatorcontrib><description>A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic derivation for any incidence‐based index that is symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous (i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further extended to formulate abundance‐based indices. Thus any symmetric and homogeneous incidence index can be easily modified to an abundance‐type version. Applying the Laplace approximation formulas, we propose estimators that adjust for the effect of unseen shared species on our abundance‐based indices. Simulation results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices are briefly discussed.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00489.x</identifier><identifier>PMID: 16918900</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Beta diversity ; Bias ; Biodiversity ; Biometrics ; Biometry ; Estimation bias ; Estimators ; Flowers &amp; plants ; Forest ecology ; Forest succession ; Models, Statistical ; Old growth forests ; probability analysis ; Rainforests ; Research methodology ; Sampling bias ; Saplings ; Seedlings ; Simulation ; Species ; species diversity ; Species overlap ; Species Specificity ; Trees ; Tropical Climate ; tropical forests</subject><ispartof>Biometrics, 2006-06, Vol.62 (2), p.361-371</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2005, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5329-e86a17c9bf93ccf5b1ee86eef2e90b73d05ff166a0872d95bbb492da09adc1073</citedby><cites>FETCH-LOGICAL-c5329-e86a17c9bf93ccf5b1ee86eef2e90b73d05ff166a0872d95bbb492da09adc1073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695855$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695855$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16918900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chao, Anne</creatorcontrib><creatorcontrib>Chazdon, Robin L</creatorcontrib><creatorcontrib>Colwell, Robert K</creatorcontrib><creatorcontrib>Shen, Tsung‐Jen</creatorcontrib><title>Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic derivation for any incidence‐based index that is symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous (i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further extended to formulate abundance‐based indices. Thus any symmetric and homogeneous incidence index can be easily modified to an abundance‐type version. Applying the Laplace approximation formulas, we propose estimators that adjust for the effect of unseen shared species on our abundance‐based indices. Simulation results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices are briefly discussed.</description><subject>Beta diversity</subject><subject>Bias</subject><subject>Biodiversity</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Flowers &amp; plants</subject><subject>Forest ecology</subject><subject>Forest succession</subject><subject>Models, Statistical</subject><subject>Old growth forests</subject><subject>probability analysis</subject><subject>Rainforests</subject><subject>Research methodology</subject><subject>Sampling bias</subject><subject>Saplings</subject><subject>Seedlings</subject><subject>Simulation</subject><subject>Species</subject><subject>species diversity</subject><subject>Species overlap</subject><subject>Species Specificity</subject><subject>Trees</subject><subject>Tropical Climate</subject><subject>tropical forests</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUkuP0zAQthCI7S78AwQRB24JfsROfODQXe2jaGER3WoRF8txJqxLHsVORHvjJ_Ab-SU4pCoSJyxZHs_30HjGCEUEJySs1-uE8JTEOKU4oRjzBOM0l8n2AZodgIdohjEWMUvJpyN07P06XCXH9DE6IkKSXGI8Q8W8GNpStwZ-_fh5qj2U0dI2ttbO9rto0ZbWgI90W0a392BddO572-jedm10dw_tmHUQzcNetR5CYrkBY4PEhlA3mxr8E_So0rWHp_vzBK0uzm_PruLrm8vF2fw6NpxRGUMuNMmMLCrJjKl4QSCkACoKEhcZKzGvKiKExnlGS8mLokglLTWWujQEZ-wEvZp8N677NoDvVWO9gbrWLXSDVyLPRCY5DcSX_xDX3eDaUJuihOWMi3R0yyeScZ33Diq1ceHlbqcIVuMQ1FqNvVZjr9U4BPVnCGobpM_3_kPRQPlXuO96ILyZCN9tDbv_Nlani5t3IQr6Z5N-7fvOHfRMSJ5zHuB4gq3vYXuAtfuqRMYyru7eX6oPb9nnj-IqVXngv5j4le6U_uKsV6slxYSP_0fIVLDfJk630g</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Chao, Anne</creator><creator>Chazdon, Robin L</creator><creator>Colwell, Robert K</creator><creator>Shen, Tsung‐Jen</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200606</creationdate><title>Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples</title><author>Chao, Anne ; Chazdon, Robin L ; Colwell, Robert K ; Shen, Tsung‐Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5329-e86a17c9bf93ccf5b1ee86eef2e90b73d05ff166a0872d95bbb492da09adc1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Beta diversity</topic><topic>Bias</topic><topic>Biodiversity</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Flowers &amp; plants</topic><topic>Forest ecology</topic><topic>Forest succession</topic><topic>Models, Statistical</topic><topic>Old growth forests</topic><topic>probability analysis</topic><topic>Rainforests</topic><topic>Research methodology</topic><topic>Sampling bias</topic><topic>Saplings</topic><topic>Seedlings</topic><topic>Simulation</topic><topic>Species</topic><topic>species diversity</topic><topic>Species overlap</topic><topic>Species Specificity</topic><topic>Trees</topic><topic>Tropical Climate</topic><topic>tropical forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chao, Anne</creatorcontrib><creatorcontrib>Chazdon, Robin L</creatorcontrib><creatorcontrib>Colwell, Robert K</creatorcontrib><creatorcontrib>Shen, Tsung‐Jen</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chao, Anne</au><au>Chazdon, Robin L</au><au>Colwell, Robert K</au><au>Shen, Tsung‐Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-06</date><risdate>2006</risdate><volume>62</volume><issue>2</issue><spage>361</spage><epage>371</epage><pages>361-371</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic derivation for any incidence‐based index that is symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous (i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further extended to formulate abundance‐based indices. Thus any symmetric and homogeneous incidence index can be easily modified to an abundance‐type version. Applying the Laplace approximation formulas, we propose estimators that adjust for the effect of unseen shared species on our abundance‐based indices. Simulation results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices are briefly discussed.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16918900</pmid><doi>10.1111/j.1541-0420.2005.00489.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2006-06, Vol.62 (2), p.361-371
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_68767952
source MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Beta diversity
Bias
Biodiversity
Biometrics
Biometry
Estimation bias
Estimators
Flowers & plants
Forest ecology
Forest succession
Models, Statistical
Old growth forests
probability analysis
Rainforests
Research methodology
Sampling bias
Saplings
Seedlings
Simulation
Species
species diversity
Species overlap
Species Specificity
Trees
Tropical Climate
tropical forests
title Abundance‐Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abundance%E2%80%90Based%20Similarity%20Indices%20and%20Their%20Estimation%20When%20There%20Are%20Unseen%20Species%20in%20Samples&rft.jtitle=Biometrics&rft.au=Chao,%20Anne&rft.date=2006-06&rft.volume=62&rft.issue=2&rft.spage=361&rft.epage=371&rft.pages=361-371&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00489.x&rft_dat=%3Cjstor_proqu%3E3695855%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213835647&rft_id=info:pmid/16918900&rft_jstor_id=3695855&rfr_iscdi=true