Spatial Event Cluster Detection Using a Compound Poisson Distribution
Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geograph...
Gespeichert in:
Veröffentlicht in: | Biometrics 2006-06, Vol.62 (2), p.465-470 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 470 |
---|---|
container_issue | 2 |
container_start_page | 465 |
container_title | Biometrics |
container_volume | 62 |
creator | Rosychuk, Rhonda J Huston, Carolyn Prasad, Narasimha G. N |
description | Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geographic surveillance. We propose a compound Poisson approach that detects event clusters by testing individual areas that may be combined with their nearest neighbors. The method is applicable to situations where the population sizes are diverse and the population distribution by important strata may differ by area. For example, a geographical region might have sparse population in the northern areas, and other areas which are predominantly retirement communities. The approach requires a coarse geographical relationship and administrative data for the numbers of population, cases, and events in each area. Pediatric self‐inflicted injuries requiring presentation to Alberta emergency departments provide an illustration. |
doi_str_mv | 10.1111/j.1541-0420.2005.00503.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68766894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695865</jstor_id><sourcerecordid>3695865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4773-d1390595492db2c6a75bbcdcd897d432fa9649c76e7591e92f884d14f30dab853</originalsourceid><addsrcrecordid>eNqNkV1v0zAUhi0EYmXwDxBEXHCXcBx_xL7gAroyJhWGtFXrneUkzuSQxsVOoPv3OKQqEldYsmzrPO_R0WOEEgwZjutdm2FGcQo0hywHYFncQLLDI7Q4FR6jBQDwlFC8PUPPQmjjUzLIn6IzzCUWEsMCrW72erC6S1Y_TT8ky24Mg_HJhRlMNVjXJ5tg-_tEJ0u327uxr5NvzoYQCxc2DN6W40Q9R08a3QXz4nieo82n1e3yc7q-vrxaflinFS0KktaYSGCSUZnXZV5xXbCyrOqqFrKoKckbLTmVVcFNwSQ2Mm-EoDWmDYFal4KRc_R27rv37sdowqB2NlSm63Rv3BgUFwXnQtIIvvkHbN3o-zibyjERhEuKIyRmqPIuBG8atfd2p_2DwqAmz6pVk0416VSTZ_XHszrE6Ktj_7Hcmfpv8Cg2Au9n4JftzMN_N1Yfr66_xFvMv5zzbRicP-Xj4EzwSUQ6l-MnmMOprP13xQtSMHX39VJx2K5vt3egeORfz3yjndL33ga1uckBMwBMBUS1vwHqWavo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213836941</pqid></control><display><type>article</type><title>Spatial Event Cluster Detection Using a Compound Poisson Distribution</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>JSTOR</source><creator>Rosychuk, Rhonda J ; Huston, Carolyn ; Prasad, Narasimha G. N</creator><creatorcontrib>Rosychuk, Rhonda J ; Huston, Carolyn ; Prasad, Narasimha G. N</creatorcontrib><description>Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geographic surveillance. We propose a compound Poisson approach that detects event clusters by testing individual areas that may be combined with their nearest neighbors. The method is applicable to situations where the population sizes are diverse and the population distribution by important strata may differ by area. For example, a geographical region might have sparse population in the northern areas, and other areas which are predominantly retirement communities. The approach requires a coarse geographical relationship and administrative data for the numbers of population, cases, and events in each area. Pediatric self‐inflicted injuries requiring presentation to Alberta emergency departments provide an illustration.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00503.x</identifier><identifier>PMID: 16918910</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Alberta - epidemiology ; Biometrics ; Biometry ; Child ; Cluster Analysis ; Compound Poisson distribution ; Data collection ; Disease cluster detection ; Disease control ; disease surveillance ; Epidemiology ; Epidemiology - statistics & numerical data ; Geographic regions ; Humans ; Monte Carlo methods ; Null hypothesis ; P values ; Poisson Distribution ; population distribution ; Population size ; retirement communities ; Self-Injurious Behavior - epidemiology ; Significance level ; Spatial distribution ; Surveillance ; Tango</subject><ispartof>Biometrics, 2006-06, Vol.62 (2), p.465-470</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2005, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4773-d1390595492db2c6a75bbcdcd897d432fa9649c76e7591e92f884d14f30dab853</citedby><cites>FETCH-LOGICAL-c4773-d1390595492db2c6a75bbcdcd897d432fa9649c76e7591e92f884d14f30dab853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695865$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695865$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,1418,27928,27929,45578,45579,58021,58025,58254,58258</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16918910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosychuk, Rhonda J</creatorcontrib><creatorcontrib>Huston, Carolyn</creatorcontrib><creatorcontrib>Prasad, Narasimha G. N</creatorcontrib><title>Spatial Event Cluster Detection Using a Compound Poisson Distribution</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geographic surveillance. We propose a compound Poisson approach that detects event clusters by testing individual areas that may be combined with their nearest neighbors. The method is applicable to situations where the population sizes are diverse and the population distribution by important strata may differ by area. For example, a geographical region might have sparse population in the northern areas, and other areas which are predominantly retirement communities. The approach requires a coarse geographical relationship and administrative data for the numbers of population, cases, and events in each area. Pediatric self‐inflicted injuries requiring presentation to Alberta emergency departments provide an illustration.</description><subject>Alberta - epidemiology</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Child</subject><subject>Cluster Analysis</subject><subject>Compound Poisson distribution</subject><subject>Data collection</subject><subject>Disease cluster detection</subject><subject>Disease control</subject><subject>disease surveillance</subject><subject>Epidemiology</subject><subject>Epidemiology - statistics & numerical data</subject><subject>Geographic regions</subject><subject>Humans</subject><subject>Monte Carlo methods</subject><subject>Null hypothesis</subject><subject>P values</subject><subject>Poisson Distribution</subject><subject>population distribution</subject><subject>Population size</subject><subject>retirement communities</subject><subject>Self-Injurious Behavior - epidemiology</subject><subject>Significance level</subject><subject>Spatial distribution</subject><subject>Surveillance</subject><subject>Tango</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1v0zAUhi0EYmXwDxBEXHCXcBx_xL7gAroyJhWGtFXrneUkzuSQxsVOoPv3OKQqEldYsmzrPO_R0WOEEgwZjutdm2FGcQo0hywHYFncQLLDI7Q4FR6jBQDwlFC8PUPPQmjjUzLIn6IzzCUWEsMCrW72erC6S1Y_TT8ky24Mg_HJhRlMNVjXJ5tg-_tEJ0u327uxr5NvzoYQCxc2DN6W40Q9R08a3QXz4nieo82n1e3yc7q-vrxaflinFS0KktaYSGCSUZnXZV5xXbCyrOqqFrKoKckbLTmVVcFNwSQ2Mm-EoDWmDYFal4KRc_R27rv37sdowqB2NlSm63Rv3BgUFwXnQtIIvvkHbN3o-zibyjERhEuKIyRmqPIuBG8atfd2p_2DwqAmz6pVk0416VSTZ_XHszrE6Ktj_7Hcmfpv8Cg2Au9n4JftzMN_N1Yfr66_xFvMv5zzbRicP-Xj4EzwSUQ6l-MnmMOprP13xQtSMHX39VJx2K5vt3egeORfz3yjndL33ga1uckBMwBMBUS1vwHqWavo</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Rosychuk, Rhonda J</creator><creator>Huston, Carolyn</creator><creator>Prasad, Narasimha G. N</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200606</creationdate><title>Spatial Event Cluster Detection Using a Compound Poisson Distribution</title><author>Rosychuk, Rhonda J ; Huston, Carolyn ; Prasad, Narasimha G. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4773-d1390595492db2c6a75bbcdcd897d432fa9649c76e7591e92f884d14f30dab853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alberta - epidemiology</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Child</topic><topic>Cluster Analysis</topic><topic>Compound Poisson distribution</topic><topic>Data collection</topic><topic>Disease cluster detection</topic><topic>Disease control</topic><topic>disease surveillance</topic><topic>Epidemiology</topic><topic>Epidemiology - statistics & numerical data</topic><topic>Geographic regions</topic><topic>Humans</topic><topic>Monte Carlo methods</topic><topic>Null hypothesis</topic><topic>P values</topic><topic>Poisson Distribution</topic><topic>population distribution</topic><topic>Population size</topic><topic>retirement communities</topic><topic>Self-Injurious Behavior - epidemiology</topic><topic>Significance level</topic><topic>Spatial distribution</topic><topic>Surveillance</topic><topic>Tango</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosychuk, Rhonda J</creatorcontrib><creatorcontrib>Huston, Carolyn</creatorcontrib><creatorcontrib>Prasad, Narasimha G. N</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosychuk, Rhonda J</au><au>Huston, Carolyn</au><au>Prasad, Narasimha G. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Event Cluster Detection Using a Compound Poisson Distribution</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-06</date><risdate>2006</risdate><volume>62</volume><issue>2</issue><spage>465</spage><epage>470</epage><pages>465-470</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geographic surveillance. We propose a compound Poisson approach that detects event clusters by testing individual areas that may be combined with their nearest neighbors. The method is applicable to situations where the population sizes are diverse and the population distribution by important strata may differ by area. For example, a geographical region might have sparse population in the northern areas, and other areas which are predominantly retirement communities. The approach requires a coarse geographical relationship and administrative data for the numbers of population, cases, and events in each area. Pediatric self‐inflicted injuries requiring presentation to Alberta emergency departments provide an illustration.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16918910</pmid><doi>10.1111/j.1541-0420.2005.00503.x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2006-06, Vol.62 (2), p.465-470 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_68766894 |
source | MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current); JSTOR |
subjects | Alberta - epidemiology Biometrics Biometry Child Cluster Analysis Compound Poisson distribution Data collection Disease cluster detection Disease control disease surveillance Epidemiology Epidemiology - statistics & numerical data Geographic regions Humans Monte Carlo methods Null hypothesis P values Poisson Distribution population distribution Population size retirement communities Self-Injurious Behavior - epidemiology Significance level Spatial distribution Surveillance Tango |
title | Spatial Event Cluster Detection Using a Compound Poisson Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Event%20Cluster%20Detection%20Using%20a%20Compound%20Poisson%20Distribution&rft.jtitle=Biometrics&rft.au=Rosychuk,%20Rhonda%20J&rft.date=2006-06&rft.volume=62&rft.issue=2&rft.spage=465&rft.epage=470&rft.pages=465-470&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00503.x&rft_dat=%3Cjstor_proqu%3E3695865%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213836941&rft_id=info:pmid/16918910&rft_jstor_id=3695865&rfr_iscdi=true |