Spatial Event Cluster Detection Using a Compound Poisson Distribution

Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geograph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2006-06, Vol.62 (2), p.465-470
Hauptverfasser: Rosychuk, Rhonda J, Huston, Carolyn, Prasad, Narasimha G. N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 2
container_start_page 465
container_title Biometrics
container_volume 62
creator Rosychuk, Rhonda J
Huston, Carolyn
Prasad, Narasimha G. N
description Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geographic surveillance. We propose a compound Poisson approach that detects event clusters by testing individual areas that may be combined with their nearest neighbors. The method is applicable to situations where the population sizes are diverse and the population distribution by important strata may differ by area. For example, a geographical region might have sparse population in the northern areas, and other areas which are predominantly retirement communities. The approach requires a coarse geographical relationship and administrative data for the numbers of population, cases, and events in each area. Pediatric self‐inflicted injuries requiring presentation to Alberta emergency departments provide an illustration.
doi_str_mv 10.1111/j.1541-0420.2005.00503.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68766894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695865</jstor_id><sourcerecordid>3695865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4773-d1390595492db2c6a75bbcdcd897d432fa9649c76e7591e92f884d14f30dab853</originalsourceid><addsrcrecordid>eNqNkV1v0zAUhi0EYmXwDxBEXHCXcBx_xL7gAroyJhWGtFXrneUkzuSQxsVOoPv3OKQqEldYsmzrPO_R0WOEEgwZjutdm2FGcQo0hywHYFncQLLDI7Q4FR6jBQDwlFC8PUPPQmjjUzLIn6IzzCUWEsMCrW72erC6S1Y_TT8ky24Mg_HJhRlMNVjXJ5tg-_tEJ0u327uxr5NvzoYQCxc2DN6W40Q9R08a3QXz4nieo82n1e3yc7q-vrxaflinFS0KktaYSGCSUZnXZV5xXbCyrOqqFrKoKckbLTmVVcFNwSQ2Mm-EoDWmDYFal4KRc_R27rv37sdowqB2NlSm63Rv3BgUFwXnQtIIvvkHbN3o-zibyjERhEuKIyRmqPIuBG8atfd2p_2DwqAmz6pVk0416VSTZ_XHszrE6Ktj_7Hcmfpv8Cg2Au9n4JftzMN_N1Yfr66_xFvMv5zzbRicP-Xj4EzwSUQ6l-MnmMOprP13xQtSMHX39VJx2K5vt3egeORfz3yjndL33ga1uckBMwBMBUS1vwHqWavo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213836941</pqid></control><display><type>article</type><title>Spatial Event Cluster Detection Using a Compound Poisson Distribution</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>JSTOR</source><creator>Rosychuk, Rhonda J ; Huston, Carolyn ; Prasad, Narasimha G. N</creator><creatorcontrib>Rosychuk, Rhonda J ; Huston, Carolyn ; Prasad, Narasimha G. N</creatorcontrib><description>Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geographic surveillance. We propose a compound Poisson approach that detects event clusters by testing individual areas that may be combined with their nearest neighbors. The method is applicable to situations where the population sizes are diverse and the population distribution by important strata may differ by area. For example, a geographical region might have sparse population in the northern areas, and other areas which are predominantly retirement communities. The approach requires a coarse geographical relationship and administrative data for the numbers of population, cases, and events in each area. Pediatric self‐inflicted injuries requiring presentation to Alberta emergency departments provide an illustration.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00503.x</identifier><identifier>PMID: 16918910</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Alberta - epidemiology ; Biometrics ; Biometry ; Child ; Cluster Analysis ; Compound Poisson distribution ; Data collection ; Disease cluster detection ; Disease control ; disease surveillance ; Epidemiology ; Epidemiology - statistics &amp; numerical data ; Geographic regions ; Humans ; Monte Carlo methods ; Null hypothesis ; P values ; Poisson Distribution ; population distribution ; Population size ; retirement communities ; Self-Injurious Behavior - epidemiology ; Significance level ; Spatial distribution ; Surveillance ; Tango</subject><ispartof>Biometrics, 2006-06, Vol.62 (2), p.465-470</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2005, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4773-d1390595492db2c6a75bbcdcd897d432fa9649c76e7591e92f884d14f30dab853</citedby><cites>FETCH-LOGICAL-c4773-d1390595492db2c6a75bbcdcd897d432fa9649c76e7591e92f884d14f30dab853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695865$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695865$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,1418,27928,27929,45578,45579,58021,58025,58254,58258</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16918910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosychuk, Rhonda J</creatorcontrib><creatorcontrib>Huston, Carolyn</creatorcontrib><creatorcontrib>Prasad, Narasimha G. N</creatorcontrib><title>Spatial Event Cluster Detection Using a Compound Poisson Distribution</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geographic surveillance. We propose a compound Poisson approach that detects event clusters by testing individual areas that may be combined with their nearest neighbors. The method is applicable to situations where the population sizes are diverse and the population distribution by important strata may differ by area. For example, a geographical region might have sparse population in the northern areas, and other areas which are predominantly retirement communities. The approach requires a coarse geographical relationship and administrative data for the numbers of population, cases, and events in each area. Pediatric self‐inflicted injuries requiring presentation to Alberta emergency departments provide an illustration.</description><subject>Alberta - epidemiology</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Child</subject><subject>Cluster Analysis</subject><subject>Compound Poisson distribution</subject><subject>Data collection</subject><subject>Disease cluster detection</subject><subject>Disease control</subject><subject>disease surveillance</subject><subject>Epidemiology</subject><subject>Epidemiology - statistics &amp; numerical data</subject><subject>Geographic regions</subject><subject>Humans</subject><subject>Monte Carlo methods</subject><subject>Null hypothesis</subject><subject>P values</subject><subject>Poisson Distribution</subject><subject>population distribution</subject><subject>Population size</subject><subject>retirement communities</subject><subject>Self-Injurious Behavior - epidemiology</subject><subject>Significance level</subject><subject>Spatial distribution</subject><subject>Surveillance</subject><subject>Tango</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1v0zAUhi0EYmXwDxBEXHCXcBx_xL7gAroyJhWGtFXrneUkzuSQxsVOoPv3OKQqEldYsmzrPO_R0WOEEgwZjutdm2FGcQo0hywHYFncQLLDI7Q4FR6jBQDwlFC8PUPPQmjjUzLIn6IzzCUWEsMCrW72erC6S1Y_TT8ky24Mg_HJhRlMNVjXJ5tg-_tEJ0u327uxr5NvzoYQCxc2DN6W40Q9R08a3QXz4nieo82n1e3yc7q-vrxaflinFS0KktaYSGCSUZnXZV5xXbCyrOqqFrKoKckbLTmVVcFNwSQ2Mm-EoDWmDYFal4KRc_R27rv37sdowqB2NlSm63Rv3BgUFwXnQtIIvvkHbN3o-zibyjERhEuKIyRmqPIuBG8atfd2p_2DwqAmz6pVk0416VSTZ_XHszrE6Ktj_7Hcmfpv8Cg2Au9n4JftzMN_N1Yfr66_xFvMv5zzbRicP-Xj4EzwSUQ6l-MnmMOprP13xQtSMHX39VJx2K5vt3egeORfz3yjndL33ga1uckBMwBMBUS1vwHqWavo</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Rosychuk, Rhonda J</creator><creator>Huston, Carolyn</creator><creator>Prasad, Narasimha G. N</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200606</creationdate><title>Spatial Event Cluster Detection Using a Compound Poisson Distribution</title><author>Rosychuk, Rhonda J ; Huston, Carolyn ; Prasad, Narasimha G. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4773-d1390595492db2c6a75bbcdcd897d432fa9649c76e7591e92f884d14f30dab853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alberta - epidemiology</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Child</topic><topic>Cluster Analysis</topic><topic>Compound Poisson distribution</topic><topic>Data collection</topic><topic>Disease cluster detection</topic><topic>Disease control</topic><topic>disease surveillance</topic><topic>Epidemiology</topic><topic>Epidemiology - statistics &amp; numerical data</topic><topic>Geographic regions</topic><topic>Humans</topic><topic>Monte Carlo methods</topic><topic>Null hypothesis</topic><topic>P values</topic><topic>Poisson Distribution</topic><topic>population distribution</topic><topic>Population size</topic><topic>retirement communities</topic><topic>Self-Injurious Behavior - epidemiology</topic><topic>Significance level</topic><topic>Spatial distribution</topic><topic>Surveillance</topic><topic>Tango</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosychuk, Rhonda J</creatorcontrib><creatorcontrib>Huston, Carolyn</creatorcontrib><creatorcontrib>Prasad, Narasimha G. N</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosychuk, Rhonda J</au><au>Huston, Carolyn</au><au>Prasad, Narasimha G. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Event Cluster Detection Using a Compound Poisson Distribution</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-06</date><risdate>2006</risdate><volume>62</volume><issue>2</issue><spage>465</spage><epage>470</epage><pages>465-470</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Geographic disease surveillance methods identify regions that have higher disease rates than expected. These approaches are generally applied to incident or prevalent cases of disease. In some contexts, disease‐related events rather than individuals are the appropriate units of analysis for geographic surveillance. We propose a compound Poisson approach that detects event clusters by testing individual areas that may be combined with their nearest neighbors. The method is applicable to situations where the population sizes are diverse and the population distribution by important strata may differ by area. For example, a geographical region might have sparse population in the northern areas, and other areas which are predominantly retirement communities. The approach requires a coarse geographical relationship and administrative data for the numbers of population, cases, and events in each area. Pediatric self‐inflicted injuries requiring presentation to Alberta emergency departments provide an illustration.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16918910</pmid><doi>10.1111/j.1541-0420.2005.00503.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2006-06, Vol.62 (2), p.465-470
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_68766894
source MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current); JSTOR
subjects Alberta - epidemiology
Biometrics
Biometry
Child
Cluster Analysis
Compound Poisson distribution
Data collection
Disease cluster detection
Disease control
disease surveillance
Epidemiology
Epidemiology - statistics & numerical data
Geographic regions
Humans
Monte Carlo methods
Null hypothesis
P values
Poisson Distribution
population distribution
Population size
retirement communities
Self-Injurious Behavior - epidemiology
Significance level
Spatial distribution
Surveillance
Tango
title Spatial Event Cluster Detection Using a Compound Poisson Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Event%20Cluster%20Detection%20Using%20a%20Compound%20Poisson%20Distribution&rft.jtitle=Biometrics&rft.au=Rosychuk,%20Rhonda%20J&rft.date=2006-06&rft.volume=62&rft.issue=2&rft.spage=465&rft.epage=470&rft.pages=465-470&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00503.x&rft_dat=%3Cjstor_proqu%3E3695865%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213836941&rft_id=info:pmid/16918910&rft_jstor_id=3695865&rfr_iscdi=true