RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila
The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2005-11, Vol.14 (22), p.3397-3405 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3405 |
---|---|
container_issue | 22 |
container_start_page | 3397 |
container_title | Human molecular genetics |
container_volume | 14 |
creator | Anderson, Peter R. Kirby, Kim Hilliker, Arthur J. Phillips, John P. |
description | The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron–sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency. |
doi_str_mv | 10.1093/hmg/ddi367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68763295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20545456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-9327e65d703ded9b3679781f22fa5a0fbb858dac6b7a99f5b4cbea61af8a44493</originalsourceid><addsrcrecordid>eNqF0U1rFTEUBuAgir1t3fgDZBDsQjo2X5OPZWnVSi8KoiLdhDOZxEmdmYzJDNR_38i9WHBjskjgPCSc8yL0nOA3BGt21o8_zrouMCEfoQ3hAtcUK_YYbbAWvBYaiwN0mPMtxkRwJp-iAyIoZpLTDfr2-eN5qEfXBVhcV-V1npPLOcSpir5aeleNYYm2j1OXAgxVSKVie5hdubjTyidY4C5Mp1WYqssUc5z7MMAxeuJhyO7Z_jxCX9-9_XJxVW8_vf9wcb6tLVdqqTWj0ommk5h1rtNtaUFLRTylHhrAvm1VozqwopWgtW9ablsHgoBXwDnX7Aid7N6dU_y1uryYMWTrhgEmF9dshJKCUd38F1Lc8LJFgS__gbdxTVNpwlBCqBZlFfR6h2zpOCfnzZzCCOm3Idj8ycSUTMwuk4Jf7F9c2zLoB7oPoYBXewDZwlBGOtmQH5xkmDWYF1fvXMiLu_tbh_TTlG9kY66-35hLdb1trvmNUeweE0qkFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211296666</pqid></control><display><type>article</type><title>RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Anderson, Peter R. ; Kirby, Kim ; Hilliker, Arthur J. ; Phillips, John P.</creator><creatorcontrib>Anderson, Peter R. ; Kirby, Kim ; Hilliker, Arthur J. ; Phillips, John P.</creatorcontrib><description>The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron–sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddi367</identifier><identifier>PMID: 16203742</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject><![CDATA[Amino Acid Sequence ; Animals ; Biological and medical sciences ; Body Size - genetics ; Catalase - physiology ; Cytosol - metabolism ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth & development ; Drosophila melanogaster - metabolism ; Drosophila Proteins - antagonists & inhibitors ; Drosophila Proteins - genetics ; Female ; Frataxin ; Fundamental and applied biological sciences. Psychology ; Gene Silencing ; Genetics of eukaryotes. Biological and molecular evolution ; Humans ; Iron - metabolism ; Iron-Binding Proteins - antagonists & inhibitors ; Iron-Binding Proteins - genetics ; Iron-Sulfur Proteins - metabolism ; Larva - genetics ; Larva - growth & development ; Larva - metabolism ; Male ; Mitochondria - metabolism ; Molecular and cellular biology ; Molecular Sequence Data ; Neurons - metabolism ; Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Pupa - genetics ; Pupa - growth & development ; Pupa - metabolism ; RNA Interference - physiology ; Superoxide Dismutase - physiology ; Superoxide Dismutase-1 ; Transgenes]]></subject><ispartof>Human molecular genetics, 2005-11, Vol.14 (22), p.3397-3405</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Nov 15, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-9327e65d703ded9b3679781f22fa5a0fbb858dac6b7a99f5b4cbea61af8a44493</citedby><cites>FETCH-LOGICAL-c488t-9327e65d703ded9b3679781f22fa5a0fbb858dac6b7a99f5b4cbea61af8a44493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17303504$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16203742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Peter R.</creatorcontrib><creatorcontrib>Kirby, Kim</creatorcontrib><creatorcontrib>Hilliker, Arthur J.</creatorcontrib><creatorcontrib>Phillips, John P.</creatorcontrib><title>RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila</title><title>Human molecular genetics</title><addtitle>Hum. Mol. Genet</addtitle><description>The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron–sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Body Size - genetics</subject><subject>Catalase - physiology</subject><subject>Cytosol - metabolism</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth & development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - antagonists & inhibitors</subject><subject>Drosophila Proteins - genetics</subject><subject>Female</subject><subject>Frataxin</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Silencing</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Humans</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins - antagonists & inhibitors</subject><subject>Iron-Binding Proteins - genetics</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Larva - genetics</subject><subject>Larva - growth & development</subject><subject>Larva - metabolism</subject><subject>Male</subject><subject>Mitochondria - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Neurons - metabolism</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Pupa - genetics</subject><subject>Pupa - growth & development</subject><subject>Pupa - metabolism</subject><subject>RNA Interference - physiology</subject><subject>Superoxide Dismutase - physiology</subject><subject>Superoxide Dismutase-1</subject><subject>Transgenes</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1rFTEUBuAgir1t3fgDZBDsQjo2X5OPZWnVSi8KoiLdhDOZxEmdmYzJDNR_38i9WHBjskjgPCSc8yL0nOA3BGt21o8_zrouMCEfoQ3hAtcUK_YYbbAWvBYaiwN0mPMtxkRwJp-iAyIoZpLTDfr2-eN5qEfXBVhcV-V1npPLOcSpir5aeleNYYm2j1OXAgxVSKVie5hdubjTyidY4C5Mp1WYqssUc5z7MMAxeuJhyO7Z_jxCX9-9_XJxVW8_vf9wcb6tLVdqqTWj0ommk5h1rtNtaUFLRTylHhrAvm1VozqwopWgtW9ablsHgoBXwDnX7Aid7N6dU_y1uryYMWTrhgEmF9dshJKCUd38F1Lc8LJFgS__gbdxTVNpwlBCqBZlFfR6h2zpOCfnzZzCCOm3Idj8ycSUTMwuk4Jf7F9c2zLoB7oPoYBXewDZwlBGOtmQH5xkmDWYF1fvXMiLu_tbh_TTlG9kY66-35hLdb1trvmNUeweE0qkFQ</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Anderson, Peter R.</creator><creator>Kirby, Kim</creator><creator>Hilliker, Arthur J.</creator><creator>Phillips, John P.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7SS</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20051115</creationdate><title>RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila</title><author>Anderson, Peter R. ; Kirby, Kim ; Hilliker, Arthur J. ; Phillips, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-9327e65d703ded9b3679781f22fa5a0fbb858dac6b7a99f5b4cbea61af8a44493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Body Size - genetics</topic><topic>Catalase - physiology</topic><topic>Cytosol - metabolism</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth & development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - antagonists & inhibitors</topic><topic>Drosophila Proteins - genetics</topic><topic>Female</topic><topic>Frataxin</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Silencing</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Humans</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins - antagonists & inhibitors</topic><topic>Iron-Binding Proteins - genetics</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Larva - genetics</topic><topic>Larva - growth & development</topic><topic>Larva - metabolism</topic><topic>Male</topic><topic>Mitochondria - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Neurons - metabolism</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Pupa - genetics</topic><topic>Pupa - growth & development</topic><topic>Pupa - metabolism</topic><topic>RNA Interference - physiology</topic><topic>Superoxide Dismutase - physiology</topic><topic>Superoxide Dismutase-1</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Peter R.</creatorcontrib><creatorcontrib>Kirby, Kim</creatorcontrib><creatorcontrib>Hilliker, Arthur J.</creatorcontrib><creatorcontrib>Phillips, John P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Peter R.</au><au>Kirby, Kim</au><au>Hilliker, Arthur J.</au><au>Phillips, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum. Mol. Genet</addtitle><date>2005-11-15</date><risdate>2005</risdate><volume>14</volume><issue>22</issue><spage>3397</spage><epage>3405</epage><pages>3397-3405</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron–sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16203742</pmid><doi>10.1093/hmg/ddi367</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2005-11, Vol.14 (22), p.3397-3405 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_proquest_miscellaneous_68763295 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amino Acid Sequence Animals Biological and medical sciences Body Size - genetics Catalase - physiology Cytosol - metabolism Drosophila Drosophila melanogaster - genetics Drosophila melanogaster - growth & development Drosophila melanogaster - metabolism Drosophila Proteins - antagonists & inhibitors Drosophila Proteins - genetics Female Frataxin Fundamental and applied biological sciences. Psychology Gene Silencing Genetics of eukaryotes. Biological and molecular evolution Humans Iron - metabolism Iron-Binding Proteins - antagonists & inhibitors Iron-Binding Proteins - genetics Iron-Sulfur Proteins - metabolism Larva - genetics Larva - growth & development Larva - metabolism Male Mitochondria - metabolism Molecular and cellular biology Molecular Sequence Data Neurons - metabolism Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors Phosphotransferases (Alcohol Group Acceptor) - genetics Pupa - genetics Pupa - growth & development Pupa - metabolism RNA Interference - physiology Superoxide Dismutase - physiology Superoxide Dismutase-1 Transgenes |
title | RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNAi-mediated%20suppression%20of%20the%20mitochondrial%20iron%20chaperone,%20frataxin,%20in%20Drosophila&rft.jtitle=Human%20molecular%20genetics&rft.au=Anderson,%20Peter%20R.&rft.date=2005-11-15&rft.volume=14&rft.issue=22&rft.spage=3397&rft.epage=3405&rft.pages=3397-3405&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/ddi367&rft_dat=%3Cproquest_cross%3E20545456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211296666&rft_id=info:pmid/16203742&rfr_iscdi=true |