RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila

The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2005-11, Vol.14 (22), p.3397-3405
Hauptverfasser: Anderson, Peter R., Kirby, Kim, Hilliker, Arthur J., Phillips, John P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3405
container_issue 22
container_start_page 3397
container_title Human molecular genetics
container_volume 14
creator Anderson, Peter R.
Kirby, Kim
Hilliker, Arthur J.
Phillips, John P.
description The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron–sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency.
doi_str_mv 10.1093/hmg/ddi367
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68763295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20545456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-9327e65d703ded9b3679781f22fa5a0fbb858dac6b7a99f5b4cbea61af8a44493</originalsourceid><addsrcrecordid>eNqF0U1rFTEUBuAgir1t3fgDZBDsQjo2X5OPZWnVSi8KoiLdhDOZxEmdmYzJDNR_38i9WHBjskjgPCSc8yL0nOA3BGt21o8_zrouMCEfoQ3hAtcUK_YYbbAWvBYaiwN0mPMtxkRwJp-iAyIoZpLTDfr2-eN5qEfXBVhcV-V1npPLOcSpir5aeleNYYm2j1OXAgxVSKVie5hdubjTyidY4C5Mp1WYqssUc5z7MMAxeuJhyO7Z_jxCX9-9_XJxVW8_vf9wcb6tLVdqqTWj0ommk5h1rtNtaUFLRTylHhrAvm1VozqwopWgtW9ablsHgoBXwDnX7Aid7N6dU_y1uryYMWTrhgEmF9dshJKCUd38F1Lc8LJFgS__gbdxTVNpwlBCqBZlFfR6h2zpOCfnzZzCCOm3Idj8ycSUTMwuk4Jf7F9c2zLoB7oPoYBXewDZwlBGOtmQH5xkmDWYF1fvXMiLu_tbh_TTlG9kY66-35hLdb1trvmNUeweE0qkFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211296666</pqid></control><display><type>article</type><title>RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Anderson, Peter R. ; Kirby, Kim ; Hilliker, Arthur J. ; Phillips, John P.</creator><creatorcontrib>Anderson, Peter R. ; Kirby, Kim ; Hilliker, Arthur J. ; Phillips, John P.</creatorcontrib><description>The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron–sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddi367</identifier><identifier>PMID: 16203742</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject><![CDATA[Amino Acid Sequence ; Animals ; Biological and medical sciences ; Body Size - genetics ; Catalase - physiology ; Cytosol - metabolism ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth & development ; Drosophila melanogaster - metabolism ; Drosophila Proteins - antagonists & inhibitors ; Drosophila Proteins - genetics ; Female ; Frataxin ; Fundamental and applied biological sciences. Psychology ; Gene Silencing ; Genetics of eukaryotes. Biological and molecular evolution ; Humans ; Iron - metabolism ; Iron-Binding Proteins - antagonists & inhibitors ; Iron-Binding Proteins - genetics ; Iron-Sulfur Proteins - metabolism ; Larva - genetics ; Larva - growth & development ; Larva - metabolism ; Male ; Mitochondria - metabolism ; Molecular and cellular biology ; Molecular Sequence Data ; Neurons - metabolism ; Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Pupa - genetics ; Pupa - growth & development ; Pupa - metabolism ; RNA Interference - physiology ; Superoxide Dismutase - physiology ; Superoxide Dismutase-1 ; Transgenes]]></subject><ispartof>Human molecular genetics, 2005-11, Vol.14 (22), p.3397-3405</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Nov 15, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-9327e65d703ded9b3679781f22fa5a0fbb858dac6b7a99f5b4cbea61af8a44493</citedby><cites>FETCH-LOGICAL-c488t-9327e65d703ded9b3679781f22fa5a0fbb858dac6b7a99f5b4cbea61af8a44493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17303504$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16203742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Peter R.</creatorcontrib><creatorcontrib>Kirby, Kim</creatorcontrib><creatorcontrib>Hilliker, Arthur J.</creatorcontrib><creatorcontrib>Phillips, John P.</creatorcontrib><title>RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila</title><title>Human molecular genetics</title><addtitle>Hum. Mol. Genet</addtitle><description>The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron–sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Body Size - genetics</subject><subject>Catalase - physiology</subject><subject>Cytosol - metabolism</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth &amp; development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - antagonists &amp; inhibitors</subject><subject>Drosophila Proteins - genetics</subject><subject>Female</subject><subject>Frataxin</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Silencing</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Humans</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins - antagonists &amp; inhibitors</subject><subject>Iron-Binding Proteins - genetics</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Larva - genetics</subject><subject>Larva - growth &amp; development</subject><subject>Larva - metabolism</subject><subject>Male</subject><subject>Mitochondria - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Neurons - metabolism</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Pupa - genetics</subject><subject>Pupa - growth &amp; development</subject><subject>Pupa - metabolism</subject><subject>RNA Interference - physiology</subject><subject>Superoxide Dismutase - physiology</subject><subject>Superoxide Dismutase-1</subject><subject>Transgenes</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1rFTEUBuAgir1t3fgDZBDsQjo2X5OPZWnVSi8KoiLdhDOZxEmdmYzJDNR_38i9WHBjskjgPCSc8yL0nOA3BGt21o8_zrouMCEfoQ3hAtcUK_YYbbAWvBYaiwN0mPMtxkRwJp-iAyIoZpLTDfr2-eN5qEfXBVhcV-V1npPLOcSpir5aeleNYYm2j1OXAgxVSKVie5hdubjTyidY4C5Mp1WYqssUc5z7MMAxeuJhyO7Z_jxCX9-9_XJxVW8_vf9wcb6tLVdqqTWj0ommk5h1rtNtaUFLRTylHhrAvm1VozqwopWgtW9ablsHgoBXwDnX7Aid7N6dU_y1uryYMWTrhgEmF9dshJKCUd38F1Lc8LJFgS__gbdxTVNpwlBCqBZlFfR6h2zpOCfnzZzCCOm3Idj8ycSUTMwuk4Jf7F9c2zLoB7oPoYBXewDZwlBGOtmQH5xkmDWYF1fvXMiLu_tbh_TTlG9kY66-35hLdb1trvmNUeweE0qkFQ</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Anderson, Peter R.</creator><creator>Kirby, Kim</creator><creator>Hilliker, Arthur J.</creator><creator>Phillips, John P.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7SS</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20051115</creationdate><title>RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila</title><author>Anderson, Peter R. ; Kirby, Kim ; Hilliker, Arthur J. ; Phillips, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-9327e65d703ded9b3679781f22fa5a0fbb858dac6b7a99f5b4cbea61af8a44493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Body Size - genetics</topic><topic>Catalase - physiology</topic><topic>Cytosol - metabolism</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth &amp; development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - antagonists &amp; inhibitors</topic><topic>Drosophila Proteins - genetics</topic><topic>Female</topic><topic>Frataxin</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Silencing</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Humans</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins - antagonists &amp; inhibitors</topic><topic>Iron-Binding Proteins - genetics</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Larva - genetics</topic><topic>Larva - growth &amp; development</topic><topic>Larva - metabolism</topic><topic>Male</topic><topic>Mitochondria - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Neurons - metabolism</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Pupa - genetics</topic><topic>Pupa - growth &amp; development</topic><topic>Pupa - metabolism</topic><topic>RNA Interference - physiology</topic><topic>Superoxide Dismutase - physiology</topic><topic>Superoxide Dismutase-1</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Peter R.</creatorcontrib><creatorcontrib>Kirby, Kim</creatorcontrib><creatorcontrib>Hilliker, Arthur J.</creatorcontrib><creatorcontrib>Phillips, John P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Peter R.</au><au>Kirby, Kim</au><au>Hilliker, Arthur J.</au><au>Phillips, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum. Mol. Genet</addtitle><date>2005-11-15</date><risdate>2005</risdate><volume>14</volume><issue>22</issue><spage>3397</spage><epage>3405</epage><pages>3397-3405</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe–S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron–sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16203742</pmid><doi>10.1093/hmg/ddi367</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2005-11, Vol.14 (22), p.3397-3405
issn 0964-6906
1460-2083
language eng
recordid cdi_proquest_miscellaneous_68763295
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amino Acid Sequence
Animals
Biological and medical sciences
Body Size - genetics
Catalase - physiology
Cytosol - metabolism
Drosophila
Drosophila melanogaster - genetics
Drosophila melanogaster - growth & development
Drosophila melanogaster - metabolism
Drosophila Proteins - antagonists & inhibitors
Drosophila Proteins - genetics
Female
Frataxin
Fundamental and applied biological sciences. Psychology
Gene Silencing
Genetics of eukaryotes. Biological and molecular evolution
Humans
Iron - metabolism
Iron-Binding Proteins - antagonists & inhibitors
Iron-Binding Proteins - genetics
Iron-Sulfur Proteins - metabolism
Larva - genetics
Larva - growth & development
Larva - metabolism
Male
Mitochondria - metabolism
Molecular and cellular biology
Molecular Sequence Data
Neurons - metabolism
Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors
Phosphotransferases (Alcohol Group Acceptor) - genetics
Pupa - genetics
Pupa - growth & development
Pupa - metabolism
RNA Interference - physiology
Superoxide Dismutase - physiology
Superoxide Dismutase-1
Transgenes
title RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNAi-mediated%20suppression%20of%20the%20mitochondrial%20iron%20chaperone,%20frataxin,%20in%20Drosophila&rft.jtitle=Human%20molecular%20genetics&rft.au=Anderson,%20Peter%20R.&rft.date=2005-11-15&rft.volume=14&rft.issue=22&rft.spage=3397&rft.epage=3405&rft.pages=3397-3405&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/ddi367&rft_dat=%3Cproquest_cross%3E20545456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211296666&rft_id=info:pmid/16203742&rfr_iscdi=true