Ascorbylated 4-hydroxy-2-nonenal as a potential biomarker of oxidative stress response

Oxidative stress, resulting from the generation of reactive oxygen species, contributes to the development of a multitude of age-related diseases. Current methods of assessing oxidative stress levels range from the detection of lipid peroxidation products, such as F 2-isoprostanes and malondialdehyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2005-11, Vol.827 (1), p.139-145
Hauptverfasser: Sowell, John, Conway, Heather M., Bruno, Richard S., Traber, Maret G., Frei, Balz, Stevens, Jan F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidative stress, resulting from the generation of reactive oxygen species, contributes to the development of a multitude of age-related diseases. Current methods of assessing oxidative stress levels range from the detection of lipid peroxidation products, such as F 2-isoprostanes and malondialdehyde, to monitoring the redox status of glutathione. While useful, traditional biomarkers of oxidative stress are not without their drawbacks, including low in vitro concentrations and possible artifact formation. In the present study, we utilize liquid chromatography coupled with tandem mass spectrometry for investigation into the use of a novel compound, ascorbylated 4-hydroxy-2-nonenal, as a potential biomarker of oxidative stress.
ISSN:1570-0232
1873-376X
DOI:10.1016/j.jchromb.2005.05.046