Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI
Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intr...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2005-11, Vol.28 (3), p.698-707 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 707 |
---|---|
container_issue | 3 |
container_start_page | 698 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 28 |
creator | Jiang, Quan Zhang, Zheng Gang Ding, Guang Liang Zhang, Li Ewing, James R. Wang, Lei Zhang, RuiLan Li, Lian Lu, Mei Meng, He Arbab, Ali S. Hu, Jiani Li, Qing Jiang Pourabdollah Nejad D, Siamak Athiraman, Hemanthkumar Chopp, Michael |
description | Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intracisternally transplanted into the adult rat 48 h after stroke (
n = 8). Before and after the transplantation, an array of MRI parameters were measured, including high resolution 3D MRI and quantitative
T
1,
T
1sat (
T
1 in the presence of an off-resonance irradiation of the macromolecules of brain),
T
2, the inverse of the apparent forward transfer rate for magnetization transfer (
k
inv), cerebral blood flow (CBF), cerebral blood volume (CBV), and blood-to-brain transfer constant (
K
i) of Gd-DTPA. The von Willerbrand factor (vWF) immunoreactive images of coronal sections obtained at 6 weeks after cell transplantation were used to analyze vWF immunoreactive vessels. MRI measurements revealed that grafted neural progenitor cells selectively migrated towards the ischemic boundary regions. In the ischemic boundary regions, angiogenesis confirmed by an increase in vascular density and the appearance of large thin wall mother vessels was coincident with increases of CBF and CBV (CBF,
P |
doi_str_mv | 10.1016/j.neuroimage.2005.06.063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68750507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811905004623</els_id><sourcerecordid>68750507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-185b6824eff64c676a0038a0f57acaaf9f7fe036aa6d7cc35e79894d374aa7953</originalsourceid><addsrcrecordid>eNqFkdtq3DAQhk1paQ7tKxRBoXfejizrdNmGpF1ICZT2WmjlkdHWK6WSHcjbR2YXArkJDEgw38z8M3_TEAobClR83W8iLjmFgx1x0wHwDYga7E1zTkHzVnPZvV3_nLWKUn3WXJSyBwBNe_W-OaOC0k5Jfd7stvEByxxGO4cUSfJk7Wwncp_TiDHMKROH00RCHBaHA7FxDGsGSyjE-hkzwcMuTcGRMuf0DytJsp3JUkIcya_f2w_NO2-ngh9P72Xz9-b6z9XP9vbux_bq223rekbnliq-E6rr0XvROyGFBWDKgufSOmu99tIjMGGtGKRzjKPUSvcDk721UnN22Xw59q3S_y91KXMIZdVuI6alGKEkBw7yVZDKjmnJVAU_vwD3acmxLmEoB1E11uNWSh0pl1MpGb25z9WZ_GgomNUuszfPdpnVLgOiBquln04Dlt0Bh-fCkz8V-H4EsB7uIWA2xQWM1YiQ0c1mSOH1KU9m7qwm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506676811</pqid></control><display><type>article</type><title>Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Jiang, Quan ; Zhang, Zheng Gang ; Ding, Guang Liang ; Zhang, Li ; Ewing, James R. ; Wang, Lei ; Zhang, RuiLan ; Li, Lian ; Lu, Mei ; Meng, He ; Arbab, Ali S. ; Hu, Jiani ; Li, Qing Jiang ; Pourabdollah Nejad D, Siamak ; Athiraman, Hemanthkumar ; Chopp, Michael</creator><creatorcontrib>Jiang, Quan ; Zhang, Zheng Gang ; Ding, Guang Liang ; Zhang, Li ; Ewing, James R. ; Wang, Lei ; Zhang, RuiLan ; Li, Lian ; Lu, Mei ; Meng, He ; Arbab, Ali S. ; Hu, Jiani ; Li, Qing Jiang ; Pourabdollah Nejad D, Siamak ; Athiraman, Hemanthkumar ; Chopp, Michael</creatorcontrib><description><![CDATA[Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intracisternally transplanted into the adult rat 48 h after stroke (
n = 8). Before and after the transplantation, an array of MRI parameters were measured, including high resolution 3D MRI and quantitative
T
1,
T
1sat (
T
1 in the presence of an off-resonance irradiation of the macromolecules of brain),
T
2, the inverse of the apparent forward transfer rate for magnetization transfer (
k
inv), cerebral blood flow (CBF), cerebral blood volume (CBV), and blood-to-brain transfer constant (
K
i) of Gd-DTPA. The von Willerbrand factor (vWF) immunoreactive images of coronal sections obtained at 6 weeks after cell transplantation were used to analyze vWF immunoreactive vessels. MRI measurements revealed that grafted neural progenitor cells selectively migrated towards the ischemic boundary regions. In the ischemic boundary regions, angiogenesis confirmed by an increase in vascular density and the appearance of large thin wall mother vessels was coincident with increases of CBF and CBV (CBF,
P < 0.01; CBV,
P < 0.01) at 6 weeks after treatment, and coincident with transient increases of
K
i with a peak at 2 to 3 weeks after cell therapy. Relative
T
1,
T
1sat,
T
2, and
k
inv decreased in the ischemic boundary regions with angiogenesis compared to that in the non-angiogenic ischemic region (
T
1,
P < 0.01 at 6 weeks;
T
1sat,
P < 0.05 at 2 to 6 weeks;
T
2,
P < 0.05 at 3 to 6 weeks;
k
inv
P < 0.05 at 6 weeks). Of these methods,
K
i appear to be the most useful MR measurements which identify and predict the location and area of angiogenesis. CBF, CBV,
T
1sat,
T
1,
T
2, and
k
inv provide complementary information to characterize ischemic tissue with and without angiogenesis. Our data suggest that select MRI parameters can identify the cerebral tissue destined to undergo angiogenesis after treatment of embolic stroke with cell therapy.]]></description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2005.06.063</identifier><identifier>PMID: 16112879</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Angiogenesis ; Animals ; Brain - pathology ; CBF ; CBV ; Cells, Cultured ; Cerebral ischemia ; Cerebrovascular Circulation - physiology ; Data Interpretation, Statistical ; Echo-Planar Imaging ; Epidermal growth factor ; Ferrocyanides ; Gadolinium ; Immunohistochemistry ; Intracranial Embolism - complications ; Intracranial Embolism - pathology ; Ischemia ; Lateral Ventricles - pathology ; Magnetic Resonance Imaging ; Medical imaging ; Methods ; Molecular imaging ; Neovascularization, Physiologic - physiology ; Neurons - physiology ; Permeability ; Rats ; Rodents ; Stem Cell Transplantation ; Stem Cells - physiology ; Stereotaxic Techniques ; Stroke - etiology ; Stroke - pathology ; Tomography ; Veins & arteries</subject><ispartof>NeuroImage (Orlando, Fla.), 2005-11, Vol.28 (3), p.698-707</ispartof><rights>2005 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Nov 15, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-185b6824eff64c676a0038a0f57acaaf9f7fe036aa6d7cc35e79894d374aa7953</citedby><cites>FETCH-LOGICAL-c431t-185b6824eff64c676a0038a0f57acaaf9f7fe036aa6d7cc35e79894d374aa7953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811905004623$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16112879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Quan</creatorcontrib><creatorcontrib>Zhang, Zheng Gang</creatorcontrib><creatorcontrib>Ding, Guang Liang</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Ewing, James R.</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, RuiLan</creatorcontrib><creatorcontrib>Li, Lian</creatorcontrib><creatorcontrib>Lu, Mei</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Arbab, Ali S.</creatorcontrib><creatorcontrib>Hu, Jiani</creatorcontrib><creatorcontrib>Li, Qing Jiang</creatorcontrib><creatorcontrib>Pourabdollah Nejad D, Siamak</creatorcontrib><creatorcontrib>Athiraman, Hemanthkumar</creatorcontrib><creatorcontrib>Chopp, Michael</creatorcontrib><title>Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description><![CDATA[Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intracisternally transplanted into the adult rat 48 h after stroke (
n = 8). Before and after the transplantation, an array of MRI parameters were measured, including high resolution 3D MRI and quantitative
T
1,
T
1sat (
T
1 in the presence of an off-resonance irradiation of the macromolecules of brain),
T
2, the inverse of the apparent forward transfer rate for magnetization transfer (
k
inv), cerebral blood flow (CBF), cerebral blood volume (CBV), and blood-to-brain transfer constant (
K
i) of Gd-DTPA. The von Willerbrand factor (vWF) immunoreactive images of coronal sections obtained at 6 weeks after cell transplantation were used to analyze vWF immunoreactive vessels. MRI measurements revealed that grafted neural progenitor cells selectively migrated towards the ischemic boundary regions. In the ischemic boundary regions, angiogenesis confirmed by an increase in vascular density and the appearance of large thin wall mother vessels was coincident with increases of CBF and CBV (CBF,
P < 0.01; CBV,
P < 0.01) at 6 weeks after treatment, and coincident with transient increases of
K
i with a peak at 2 to 3 weeks after cell therapy. Relative
T
1,
T
1sat,
T
2, and
k
inv decreased in the ischemic boundary regions with angiogenesis compared to that in the non-angiogenic ischemic region (
T
1,
P < 0.01 at 6 weeks;
T
1sat,
P < 0.05 at 2 to 6 weeks;
T
2,
P < 0.05 at 3 to 6 weeks;
k
inv
P < 0.05 at 6 weeks). Of these methods,
K
i appear to be the most useful MR measurements which identify and predict the location and area of angiogenesis. CBF, CBV,
T
1sat,
T
1,
T
2, and
k
inv provide complementary information to characterize ischemic tissue with and without angiogenesis. Our data suggest that select MRI parameters can identify the cerebral tissue destined to undergo angiogenesis after treatment of embolic stroke with cell therapy.]]></description><subject>Algorithms</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Brain - pathology</subject><subject>CBF</subject><subject>CBV</subject><subject>Cells, Cultured</subject><subject>Cerebral ischemia</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Data Interpretation, Statistical</subject><subject>Echo-Planar Imaging</subject><subject>Epidermal growth factor</subject><subject>Ferrocyanides</subject><subject>Gadolinium</subject><subject>Immunohistochemistry</subject><subject>Intracranial Embolism - complications</subject><subject>Intracranial Embolism - pathology</subject><subject>Ischemia</subject><subject>Lateral Ventricles - pathology</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Molecular imaging</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Neurons - physiology</subject><subject>Permeability</subject><subject>Rats</subject><subject>Rodents</subject><subject>Stem Cell Transplantation</subject><subject>Stem Cells - physiology</subject><subject>Stereotaxic Techniques</subject><subject>Stroke - etiology</subject><subject>Stroke - pathology</subject><subject>Tomography</subject><subject>Veins & arteries</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkdtq3DAQhk1paQ7tKxRBoXfejizrdNmGpF1ICZT2WmjlkdHWK6WSHcjbR2YXArkJDEgw38z8M3_TEAobClR83W8iLjmFgx1x0wHwDYga7E1zTkHzVnPZvV3_nLWKUn3WXJSyBwBNe_W-OaOC0k5Jfd7stvEByxxGO4cUSfJk7Wwncp_TiDHMKROH00RCHBaHA7FxDGsGSyjE-hkzwcMuTcGRMuf0DytJsp3JUkIcya_f2w_NO2-ngh9P72Xz9-b6z9XP9vbux_bq223rekbnliq-E6rr0XvROyGFBWDKgufSOmu99tIjMGGtGKRzjKPUSvcDk721UnN22Xw59q3S_y91KXMIZdVuI6alGKEkBw7yVZDKjmnJVAU_vwD3acmxLmEoB1E11uNWSh0pl1MpGb25z9WZ_GgomNUuszfPdpnVLgOiBquln04Dlt0Bh-fCkz8V-H4EsB7uIWA2xQWM1YiQ0c1mSOH1KU9m7qwm</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Jiang, Quan</creator><creator>Zhang, Zheng Gang</creator><creator>Ding, Guang Liang</creator><creator>Zhang, Li</creator><creator>Ewing, James R.</creator><creator>Wang, Lei</creator><creator>Zhang, RuiLan</creator><creator>Li, Lian</creator><creator>Lu, Mei</creator><creator>Meng, He</creator><creator>Arbab, Ali S.</creator><creator>Hu, Jiani</creator><creator>Li, Qing Jiang</creator><creator>Pourabdollah Nejad D, Siamak</creator><creator>Athiraman, Hemanthkumar</creator><creator>Chopp, Michael</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20051115</creationdate><title>Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI</title><author>Jiang, Quan ; Zhang, Zheng Gang ; Ding, Guang Liang ; Zhang, Li ; Ewing, James R. ; Wang, Lei ; Zhang, RuiLan ; Li, Lian ; Lu, Mei ; Meng, He ; Arbab, Ali S. ; Hu, Jiani ; Li, Qing Jiang ; Pourabdollah Nejad D, Siamak ; Athiraman, Hemanthkumar ; Chopp, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-185b6824eff64c676a0038a0f57acaaf9f7fe036aa6d7cc35e79894d374aa7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Brain - pathology</topic><topic>CBF</topic><topic>CBV</topic><topic>Cells, Cultured</topic><topic>Cerebral ischemia</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Data Interpretation, Statistical</topic><topic>Echo-Planar Imaging</topic><topic>Epidermal growth factor</topic><topic>Ferrocyanides</topic><topic>Gadolinium</topic><topic>Immunohistochemistry</topic><topic>Intracranial Embolism - complications</topic><topic>Intracranial Embolism - pathology</topic><topic>Ischemia</topic><topic>Lateral Ventricles - pathology</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Molecular imaging</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Neurons - physiology</topic><topic>Permeability</topic><topic>Rats</topic><topic>Rodents</topic><topic>Stem Cell Transplantation</topic><topic>Stem Cells - physiology</topic><topic>Stereotaxic Techniques</topic><topic>Stroke - etiology</topic><topic>Stroke - pathology</topic><topic>Tomography</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Quan</creatorcontrib><creatorcontrib>Zhang, Zheng Gang</creatorcontrib><creatorcontrib>Ding, Guang Liang</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Ewing, James R.</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, RuiLan</creatorcontrib><creatorcontrib>Li, Lian</creatorcontrib><creatorcontrib>Lu, Mei</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Arbab, Ali S.</creatorcontrib><creatorcontrib>Hu, Jiani</creatorcontrib><creatorcontrib>Li, Qing Jiang</creatorcontrib><creatorcontrib>Pourabdollah Nejad D, Siamak</creatorcontrib><creatorcontrib>Athiraman, Hemanthkumar</creatorcontrib><creatorcontrib>Chopp, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Quan</au><au>Zhang, Zheng Gang</au><au>Ding, Guang Liang</au><au>Zhang, Li</au><au>Ewing, James R.</au><au>Wang, Lei</au><au>Zhang, RuiLan</au><au>Li, Lian</au><au>Lu, Mei</au><au>Meng, He</au><au>Arbab, Ali S.</au><au>Hu, Jiani</au><au>Li, Qing Jiang</au><au>Pourabdollah Nejad D, Siamak</au><au>Athiraman, Hemanthkumar</au><au>Chopp, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2005-11-15</date><risdate>2005</risdate><volume>28</volume><issue>3</issue><spage>698</spage><epage>707</epage><pages>698-707</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract><![CDATA[Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intracisternally transplanted into the adult rat 48 h after stroke (
n = 8). Before and after the transplantation, an array of MRI parameters were measured, including high resolution 3D MRI and quantitative
T
1,
T
1sat (
T
1 in the presence of an off-resonance irradiation of the macromolecules of brain),
T
2, the inverse of the apparent forward transfer rate for magnetization transfer (
k
inv), cerebral blood flow (CBF), cerebral blood volume (CBV), and blood-to-brain transfer constant (
K
i) of Gd-DTPA. The von Willerbrand factor (vWF) immunoreactive images of coronal sections obtained at 6 weeks after cell transplantation were used to analyze vWF immunoreactive vessels. MRI measurements revealed that grafted neural progenitor cells selectively migrated towards the ischemic boundary regions. In the ischemic boundary regions, angiogenesis confirmed by an increase in vascular density and the appearance of large thin wall mother vessels was coincident with increases of CBF and CBV (CBF,
P < 0.01; CBV,
P < 0.01) at 6 weeks after treatment, and coincident with transient increases of
K
i with a peak at 2 to 3 weeks after cell therapy. Relative
T
1,
T
1sat,
T
2, and
k
inv decreased in the ischemic boundary regions with angiogenesis compared to that in the non-angiogenic ischemic region (
T
1,
P < 0.01 at 6 weeks;
T
1sat,
P < 0.05 at 2 to 6 weeks;
T
2,
P < 0.05 at 3 to 6 weeks;
k
inv
P < 0.05 at 6 weeks). Of these methods,
K
i appear to be the most useful MR measurements which identify and predict the location and area of angiogenesis. CBF, CBV,
T
1sat,
T
1,
T
2, and
k
inv provide complementary information to characterize ischemic tissue with and without angiogenesis. Our data suggest that select MRI parameters can identify the cerebral tissue destined to undergo angiogenesis after treatment of embolic stroke with cell therapy.]]></abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16112879</pmid><doi>10.1016/j.neuroimage.2005.06.063</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2005-11, Vol.28 (3), p.698-707 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_68750507 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Angiogenesis Animals Brain - pathology CBF CBV Cells, Cultured Cerebral ischemia Cerebrovascular Circulation - physiology Data Interpretation, Statistical Echo-Planar Imaging Epidermal growth factor Ferrocyanides Gadolinium Immunohistochemistry Intracranial Embolism - complications Intracranial Embolism - pathology Ischemia Lateral Ventricles - pathology Magnetic Resonance Imaging Medical imaging Methods Molecular imaging Neovascularization, Physiologic - physiology Neurons - physiology Permeability Rats Rodents Stem Cell Transplantation Stem Cells - physiology Stereotaxic Techniques Stroke - etiology Stroke - pathology Tomography Veins & arteries |
title | Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20neural%20progenitor%20cell%20induced%20angiogenesis%20after%20embolic%20stroke%20in%20rat%20using%20MRI&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Jiang,%20Quan&rft.date=2005-11-15&rft.volume=28&rft.issue=3&rft.spage=698&rft.epage=707&rft.pages=698-707&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2005.06.063&rft_dat=%3Cproquest_cross%3E68750507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506676811&rft_id=info:pmid/16112879&rft_els_id=S1053811905004623&rfr_iscdi=true |