Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI

Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2005-11, Vol.28 (3), p.698-707
Hauptverfasser: Jiang, Quan, Zhang, Zheng Gang, Ding, Guang Liang, Zhang, Li, Ewing, James R., Wang, Lei, Zhang, RuiLan, Li, Lian, Lu, Mei, Meng, He, Arbab, Ali S., Hu, Jiani, Li, Qing Jiang, Pourabdollah Nejad D, Siamak, Athiraman, Hemanthkumar, Chopp, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 3
container_start_page 698
container_title NeuroImage (Orlando, Fla.)
container_volume 28
creator Jiang, Quan
Zhang, Zheng Gang
Ding, Guang Liang
Zhang, Li
Ewing, James R.
Wang, Lei
Zhang, RuiLan
Li, Lian
Lu, Mei
Meng, He
Arbab, Ali S.
Hu, Jiani
Li, Qing Jiang
Pourabdollah Nejad D, Siamak
Athiraman, Hemanthkumar
Chopp, Michael
description Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intracisternally transplanted into the adult rat 48 h after stroke ( n = 8). Before and after the transplantation, an array of MRI parameters were measured, including high resolution 3D MRI and quantitative T 1, T 1sat ( T 1 in the presence of an off-resonance irradiation of the macromolecules of brain), T 2, the inverse of the apparent forward transfer rate for magnetization transfer ( k inv), cerebral blood flow (CBF), cerebral blood volume (CBV), and blood-to-brain transfer constant ( K i) of Gd-DTPA. The von Willerbrand factor (vWF) immunoreactive images of coronal sections obtained at 6 weeks after cell transplantation were used to analyze vWF immunoreactive vessels. MRI measurements revealed that grafted neural progenitor cells selectively migrated towards the ischemic boundary regions. In the ischemic boundary regions, angiogenesis confirmed by an increase in vascular density and the appearance of large thin wall mother vessels was coincident with increases of CBF and CBV (CBF, P 
doi_str_mv 10.1016/j.neuroimage.2005.06.063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68750507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811905004623</els_id><sourcerecordid>68750507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-185b6824eff64c676a0038a0f57acaaf9f7fe036aa6d7cc35e79894d374aa7953</originalsourceid><addsrcrecordid>eNqFkdtq3DAQhk1paQ7tKxRBoXfejizrdNmGpF1ICZT2WmjlkdHWK6WSHcjbR2YXArkJDEgw38z8M3_TEAobClR83W8iLjmFgx1x0wHwDYga7E1zTkHzVnPZvV3_nLWKUn3WXJSyBwBNe_W-OaOC0k5Jfd7stvEByxxGO4cUSfJk7Wwncp_TiDHMKROH00RCHBaHA7FxDGsGSyjE-hkzwcMuTcGRMuf0DytJsp3JUkIcya_f2w_NO2-ngh9P72Xz9-b6z9XP9vbux_bq223rekbnliq-E6rr0XvROyGFBWDKgufSOmu99tIjMGGtGKRzjKPUSvcDk721UnN22Xw59q3S_y91KXMIZdVuI6alGKEkBw7yVZDKjmnJVAU_vwD3acmxLmEoB1E11uNWSh0pl1MpGb25z9WZ_GgomNUuszfPdpnVLgOiBquln04Dlt0Bh-fCkz8V-H4EsB7uIWA2xQWM1YiQ0c1mSOH1KU9m7qwm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506676811</pqid></control><display><type>article</type><title>Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Jiang, Quan ; Zhang, Zheng Gang ; Ding, Guang Liang ; Zhang, Li ; Ewing, James R. ; Wang, Lei ; Zhang, RuiLan ; Li, Lian ; Lu, Mei ; Meng, He ; Arbab, Ali S. ; Hu, Jiani ; Li, Qing Jiang ; Pourabdollah Nejad D, Siamak ; Athiraman, Hemanthkumar ; Chopp, Michael</creator><creatorcontrib>Jiang, Quan ; Zhang, Zheng Gang ; Ding, Guang Liang ; Zhang, Li ; Ewing, James R. ; Wang, Lei ; Zhang, RuiLan ; Li, Lian ; Lu, Mei ; Meng, He ; Arbab, Ali S. ; Hu, Jiani ; Li, Qing Jiang ; Pourabdollah Nejad D, Siamak ; Athiraman, Hemanthkumar ; Chopp, Michael</creatorcontrib><description><![CDATA[Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intracisternally transplanted into the adult rat 48 h after stroke ( n = 8). Before and after the transplantation, an array of MRI parameters were measured, including high resolution 3D MRI and quantitative T 1, T 1sat ( T 1 in the presence of an off-resonance irradiation of the macromolecules of brain), T 2, the inverse of the apparent forward transfer rate for magnetization transfer ( k inv), cerebral blood flow (CBF), cerebral blood volume (CBV), and blood-to-brain transfer constant ( K i) of Gd-DTPA. The von Willerbrand factor (vWF) immunoreactive images of coronal sections obtained at 6 weeks after cell transplantation were used to analyze vWF immunoreactive vessels. MRI measurements revealed that grafted neural progenitor cells selectively migrated towards the ischemic boundary regions. In the ischemic boundary regions, angiogenesis confirmed by an increase in vascular density and the appearance of large thin wall mother vessels was coincident with increases of CBF and CBV (CBF, P < 0.01; CBV, P < 0.01) at 6 weeks after treatment, and coincident with transient increases of K i with a peak at 2 to 3 weeks after cell therapy. Relative T 1, T 1sat, T 2, and k inv decreased in the ischemic boundary regions with angiogenesis compared to that in the non-angiogenic ischemic region ( T 1, P < 0.01 at 6 weeks; T 1sat, P < 0.05 at 2 to 6 weeks; T 2, P < 0.05 at 3 to 6 weeks; k inv P < 0.05 at 6 weeks). Of these methods, K i appear to be the most useful MR measurements which identify and predict the location and area of angiogenesis. CBF, CBV, T 1sat, T 1, T 2, and k inv provide complementary information to characterize ischemic tissue with and without angiogenesis. Our data suggest that select MRI parameters can identify the cerebral tissue destined to undergo angiogenesis after treatment of embolic stroke with cell therapy.]]></description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2005.06.063</identifier><identifier>PMID: 16112879</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Angiogenesis ; Animals ; Brain - pathology ; CBF ; CBV ; Cells, Cultured ; Cerebral ischemia ; Cerebrovascular Circulation - physiology ; Data Interpretation, Statistical ; Echo-Planar Imaging ; Epidermal growth factor ; Ferrocyanides ; Gadolinium ; Immunohistochemistry ; Intracranial Embolism - complications ; Intracranial Embolism - pathology ; Ischemia ; Lateral Ventricles - pathology ; Magnetic Resonance Imaging ; Medical imaging ; Methods ; Molecular imaging ; Neovascularization, Physiologic - physiology ; Neurons - physiology ; Permeability ; Rats ; Rodents ; Stem Cell Transplantation ; Stem Cells - physiology ; Stereotaxic Techniques ; Stroke - etiology ; Stroke - pathology ; Tomography ; Veins &amp; arteries</subject><ispartof>NeuroImage (Orlando, Fla.), 2005-11, Vol.28 (3), p.698-707</ispartof><rights>2005 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Nov 15, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-185b6824eff64c676a0038a0f57acaaf9f7fe036aa6d7cc35e79894d374aa7953</citedby><cites>FETCH-LOGICAL-c431t-185b6824eff64c676a0038a0f57acaaf9f7fe036aa6d7cc35e79894d374aa7953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811905004623$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16112879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Quan</creatorcontrib><creatorcontrib>Zhang, Zheng Gang</creatorcontrib><creatorcontrib>Ding, Guang Liang</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Ewing, James R.</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, RuiLan</creatorcontrib><creatorcontrib>Li, Lian</creatorcontrib><creatorcontrib>Lu, Mei</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Arbab, Ali S.</creatorcontrib><creatorcontrib>Hu, Jiani</creatorcontrib><creatorcontrib>Li, Qing Jiang</creatorcontrib><creatorcontrib>Pourabdollah Nejad D, Siamak</creatorcontrib><creatorcontrib>Athiraman, Hemanthkumar</creatorcontrib><creatorcontrib>Chopp, Michael</creatorcontrib><title>Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description><![CDATA[Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intracisternally transplanted into the adult rat 48 h after stroke ( n = 8). Before and after the transplantation, an array of MRI parameters were measured, including high resolution 3D MRI and quantitative T 1, T 1sat ( T 1 in the presence of an off-resonance irradiation of the macromolecules of brain), T 2, the inverse of the apparent forward transfer rate for magnetization transfer ( k inv), cerebral blood flow (CBF), cerebral blood volume (CBV), and blood-to-brain transfer constant ( K i) of Gd-DTPA. The von Willerbrand factor (vWF) immunoreactive images of coronal sections obtained at 6 weeks after cell transplantation were used to analyze vWF immunoreactive vessels. MRI measurements revealed that grafted neural progenitor cells selectively migrated towards the ischemic boundary regions. In the ischemic boundary regions, angiogenesis confirmed by an increase in vascular density and the appearance of large thin wall mother vessels was coincident with increases of CBF and CBV (CBF, P < 0.01; CBV, P < 0.01) at 6 weeks after treatment, and coincident with transient increases of K i with a peak at 2 to 3 weeks after cell therapy. Relative T 1, T 1sat, T 2, and k inv decreased in the ischemic boundary regions with angiogenesis compared to that in the non-angiogenic ischemic region ( T 1, P < 0.01 at 6 weeks; T 1sat, P < 0.05 at 2 to 6 weeks; T 2, P < 0.05 at 3 to 6 weeks; k inv P < 0.05 at 6 weeks). Of these methods, K i appear to be the most useful MR measurements which identify and predict the location and area of angiogenesis. CBF, CBV, T 1sat, T 1, T 2, and k inv provide complementary information to characterize ischemic tissue with and without angiogenesis. Our data suggest that select MRI parameters can identify the cerebral tissue destined to undergo angiogenesis after treatment of embolic stroke with cell therapy.]]></description><subject>Algorithms</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Brain - pathology</subject><subject>CBF</subject><subject>CBV</subject><subject>Cells, Cultured</subject><subject>Cerebral ischemia</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Data Interpretation, Statistical</subject><subject>Echo-Planar Imaging</subject><subject>Epidermal growth factor</subject><subject>Ferrocyanides</subject><subject>Gadolinium</subject><subject>Immunohistochemistry</subject><subject>Intracranial Embolism - complications</subject><subject>Intracranial Embolism - pathology</subject><subject>Ischemia</subject><subject>Lateral Ventricles - pathology</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Molecular imaging</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Neurons - physiology</subject><subject>Permeability</subject><subject>Rats</subject><subject>Rodents</subject><subject>Stem Cell Transplantation</subject><subject>Stem Cells - physiology</subject><subject>Stereotaxic Techniques</subject><subject>Stroke - etiology</subject><subject>Stroke - pathology</subject><subject>Tomography</subject><subject>Veins &amp; arteries</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkdtq3DAQhk1paQ7tKxRBoXfejizrdNmGpF1ICZT2WmjlkdHWK6WSHcjbR2YXArkJDEgw38z8M3_TEAobClR83W8iLjmFgx1x0wHwDYga7E1zTkHzVnPZvV3_nLWKUn3WXJSyBwBNe_W-OaOC0k5Jfd7stvEByxxGO4cUSfJk7Wwncp_TiDHMKROH00RCHBaHA7FxDGsGSyjE-hkzwcMuTcGRMuf0DytJsp3JUkIcya_f2w_NO2-ngh9P72Xz9-b6z9XP9vbux_bq223rekbnliq-E6rr0XvROyGFBWDKgufSOmu99tIjMGGtGKRzjKPUSvcDk721UnN22Xw59q3S_y91KXMIZdVuI6alGKEkBw7yVZDKjmnJVAU_vwD3acmxLmEoB1E11uNWSh0pl1MpGb25z9WZ_GgomNUuszfPdpnVLgOiBquln04Dlt0Bh-fCkz8V-H4EsB7uIWA2xQWM1YiQ0c1mSOH1KU9m7qwm</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Jiang, Quan</creator><creator>Zhang, Zheng Gang</creator><creator>Ding, Guang Liang</creator><creator>Zhang, Li</creator><creator>Ewing, James R.</creator><creator>Wang, Lei</creator><creator>Zhang, RuiLan</creator><creator>Li, Lian</creator><creator>Lu, Mei</creator><creator>Meng, He</creator><creator>Arbab, Ali S.</creator><creator>Hu, Jiani</creator><creator>Li, Qing Jiang</creator><creator>Pourabdollah Nejad D, Siamak</creator><creator>Athiraman, Hemanthkumar</creator><creator>Chopp, Michael</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20051115</creationdate><title>Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI</title><author>Jiang, Quan ; Zhang, Zheng Gang ; Ding, Guang Liang ; Zhang, Li ; Ewing, James R. ; Wang, Lei ; Zhang, RuiLan ; Li, Lian ; Lu, Mei ; Meng, He ; Arbab, Ali S. ; Hu, Jiani ; Li, Qing Jiang ; Pourabdollah Nejad D, Siamak ; Athiraman, Hemanthkumar ; Chopp, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-185b6824eff64c676a0038a0f57acaaf9f7fe036aa6d7cc35e79894d374aa7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Brain - pathology</topic><topic>CBF</topic><topic>CBV</topic><topic>Cells, Cultured</topic><topic>Cerebral ischemia</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Data Interpretation, Statistical</topic><topic>Echo-Planar Imaging</topic><topic>Epidermal growth factor</topic><topic>Ferrocyanides</topic><topic>Gadolinium</topic><topic>Immunohistochemistry</topic><topic>Intracranial Embolism - complications</topic><topic>Intracranial Embolism - pathology</topic><topic>Ischemia</topic><topic>Lateral Ventricles - pathology</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Molecular imaging</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Neurons - physiology</topic><topic>Permeability</topic><topic>Rats</topic><topic>Rodents</topic><topic>Stem Cell Transplantation</topic><topic>Stem Cells - physiology</topic><topic>Stereotaxic Techniques</topic><topic>Stroke - etiology</topic><topic>Stroke - pathology</topic><topic>Tomography</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Quan</creatorcontrib><creatorcontrib>Zhang, Zheng Gang</creatorcontrib><creatorcontrib>Ding, Guang Liang</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Ewing, James R.</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, RuiLan</creatorcontrib><creatorcontrib>Li, Lian</creatorcontrib><creatorcontrib>Lu, Mei</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Arbab, Ali S.</creatorcontrib><creatorcontrib>Hu, Jiani</creatorcontrib><creatorcontrib>Li, Qing Jiang</creatorcontrib><creatorcontrib>Pourabdollah Nejad D, Siamak</creatorcontrib><creatorcontrib>Athiraman, Hemanthkumar</creatorcontrib><creatorcontrib>Chopp, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Quan</au><au>Zhang, Zheng Gang</au><au>Ding, Guang Liang</au><au>Zhang, Li</au><au>Ewing, James R.</au><au>Wang, Lei</au><au>Zhang, RuiLan</au><au>Li, Lian</au><au>Lu, Mei</au><au>Meng, He</au><au>Arbab, Ali S.</au><au>Hu, Jiani</au><au>Li, Qing Jiang</au><au>Pourabdollah Nejad D, Siamak</au><au>Athiraman, Hemanthkumar</au><au>Chopp, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2005-11-15</date><risdate>2005</risdate><volume>28</volume><issue>3</issue><spage>698</spage><epage>707</epage><pages>698-707</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract><![CDATA[Using MRI, we investigated dynamic changes of brain angiogenesis after neural progenitor cell transplantation in the living adult rat subjected to embolic stroke. Neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat were labeled by superparamagnetic particles and intracisternally transplanted into the adult rat 48 h after stroke ( n = 8). Before and after the transplantation, an array of MRI parameters were measured, including high resolution 3D MRI and quantitative T 1, T 1sat ( T 1 in the presence of an off-resonance irradiation of the macromolecules of brain), T 2, the inverse of the apparent forward transfer rate for magnetization transfer ( k inv), cerebral blood flow (CBF), cerebral blood volume (CBV), and blood-to-brain transfer constant ( K i) of Gd-DTPA. The von Willerbrand factor (vWF) immunoreactive images of coronal sections obtained at 6 weeks after cell transplantation were used to analyze vWF immunoreactive vessels. MRI measurements revealed that grafted neural progenitor cells selectively migrated towards the ischemic boundary regions. In the ischemic boundary regions, angiogenesis confirmed by an increase in vascular density and the appearance of large thin wall mother vessels was coincident with increases of CBF and CBV (CBF, P < 0.01; CBV, P < 0.01) at 6 weeks after treatment, and coincident with transient increases of K i with a peak at 2 to 3 weeks after cell therapy. Relative T 1, T 1sat, T 2, and k inv decreased in the ischemic boundary regions with angiogenesis compared to that in the non-angiogenic ischemic region ( T 1, P < 0.01 at 6 weeks; T 1sat, P < 0.05 at 2 to 6 weeks; T 2, P < 0.05 at 3 to 6 weeks; k inv P < 0.05 at 6 weeks). Of these methods, K i appear to be the most useful MR measurements which identify and predict the location and area of angiogenesis. CBF, CBV, T 1sat, T 1, T 2, and k inv provide complementary information to characterize ischemic tissue with and without angiogenesis. Our data suggest that select MRI parameters can identify the cerebral tissue destined to undergo angiogenesis after treatment of embolic stroke with cell therapy.]]></abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16112879</pmid><doi>10.1016/j.neuroimage.2005.06.063</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2005-11, Vol.28 (3), p.698-707
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_68750507
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Angiogenesis
Animals
Brain - pathology
CBF
CBV
Cells, Cultured
Cerebral ischemia
Cerebrovascular Circulation - physiology
Data Interpretation, Statistical
Echo-Planar Imaging
Epidermal growth factor
Ferrocyanides
Gadolinium
Immunohistochemistry
Intracranial Embolism - complications
Intracranial Embolism - pathology
Ischemia
Lateral Ventricles - pathology
Magnetic Resonance Imaging
Medical imaging
Methods
Molecular imaging
Neovascularization, Physiologic - physiology
Neurons - physiology
Permeability
Rats
Rodents
Stem Cell Transplantation
Stem Cells - physiology
Stereotaxic Techniques
Stroke - etiology
Stroke - pathology
Tomography
Veins & arteries
title Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20neural%20progenitor%20cell%20induced%20angiogenesis%20after%20embolic%20stroke%20in%20rat%20using%20MRI&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Jiang,%20Quan&rft.date=2005-11-15&rft.volume=28&rft.issue=3&rft.spage=698&rft.epage=707&rft.pages=698-707&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2005.06.063&rft_dat=%3Cproquest_cross%3E68750507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506676811&rft_id=info:pmid/16112879&rft_els_id=S1053811905004623&rfr_iscdi=true