Silene tatarica microsatellites are frequently located in repetitive DNA

The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolutionary biology 2006-09, Vol.19 (5), p.1612-1619
Hauptverfasser: TERO, N., NEUMEIER, H., GUDAVALLI, R., SCHLÖTTERER, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1619
container_issue 5
container_start_page 1612
container_title Journal of evolutionary biology
container_volume 19
creator TERO, N.
NEUMEIER, H.
GUDAVALLI, R.
SCHLÖTTERER, C.
description The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (π = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution.
doi_str_mv 10.1111/j.1420-9101.2006.01118.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68750055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19474772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5418-f1162d2605925d07db219904ef184bb26dcefd8cb6d15af06f6c70860c60ca223</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMorl9_QYIHb60z2SRtDx78_kD0oIK3kKYpZOm2a9JV99-buouCFw2BDJlnXmbmJYQipBjP0SRFziApEDBlADKF-JunH2tk6zuxHmNASEDiy4hshzABQMmF2CQjlJEoCtgi14-usa2lve61d0bTqTO-C7q3TeN6G6j2ltbevs5t2zcL2nQm5irqWurtzPaud2-Wnt-f7JKNWjfB7q3eHfJ8efF0dp3cPVzdnJ3cJUZwzJMaUbKKSRAFExVkVckwNsJtjTkvSyYrY-sqN6WsUOgaZC1NBrkEE69mbLxDDpe6M9_FpkKvpi6Y2K1ubTcPSuaZABDiTxALnvEsGxQPfoGTbu7bOIRikHGeIUKE8iU0bCd4W6uZd1PtFwpBDZ6oiRpWr4bVq8ET9eWJ-oil-yv9eTm11U_hyoQIHC-B9-jF4t_C6vbidIjGnwydmPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207447110</pqid></control><display><type>article</type><title>Silene tatarica microsatellites are frequently located in repetitive DNA</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>TERO, N. ; NEUMEIER, H. ; GUDAVALLI, R. ; SCHLÖTTERER, C.</creator><creatorcontrib>TERO, N. ; NEUMEIER, H. ; GUDAVALLI, R. ; SCHLÖTTERER, C.</creatorcontrib><description>The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (π = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution.</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/j.1420-9101.2006.01118.x</identifier><identifier>PMID: 16910990</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Base Sequence ; Cloning ; Cloning, Molecular ; Deoxyribonucleic acid ; DNA ; DNA Primers ; DNA, Plant - chemistry ; enrichment ; Evolution ; Evolution, Molecular ; Gene Library ; Genomics ; microsatellite genesis ; Microsatellite Repeats ; Molecular Sequence Data ; Mutation ; Polymerase Chain Reaction ; proto‐microsatellite ; repetitive DNA ; Repetitive Sequences, Nucleic Acid ; Sequence Alignment ; Silene - genetics ; Silene tatarica</subject><ispartof>Journal of evolutionary biology, 2006-09, Vol.19 (5), p.1612-1619</ispartof><rights>2006 The Authors Journal Compilation 2006 European Society for Evolutionary Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5418-f1162d2605925d07db219904ef184bb26dcefd8cb6d15af06f6c70860c60ca223</citedby><cites>FETCH-LOGICAL-c5418-f1162d2605925d07db219904ef184bb26dcefd8cb6d15af06f6c70860c60ca223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1420-9101.2006.01118.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1420-9101.2006.01118.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16910990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>TERO, N.</creatorcontrib><creatorcontrib>NEUMEIER, H.</creatorcontrib><creatorcontrib>GUDAVALLI, R.</creatorcontrib><creatorcontrib>SCHLÖTTERER, C.</creatorcontrib><title>Silene tatarica microsatellites are frequently located in repetitive DNA</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (π = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution.</description><subject>Base Sequence</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Primers</subject><subject>DNA, Plant - chemistry</subject><subject>enrichment</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene Library</subject><subject>Genomics</subject><subject>microsatellite genesis</subject><subject>Microsatellite Repeats</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Polymerase Chain Reaction</subject><subject>proto‐microsatellite</subject><subject>repetitive DNA</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Sequence Alignment</subject><subject>Silene - genetics</subject><subject>Silene tatarica</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMorl9_QYIHb60z2SRtDx78_kD0oIK3kKYpZOm2a9JV99-buouCFw2BDJlnXmbmJYQipBjP0SRFziApEDBlADKF-JunH2tk6zuxHmNASEDiy4hshzABQMmF2CQjlJEoCtgi14-usa2lve61d0bTqTO-C7q3TeN6G6j2ltbevs5t2zcL2nQm5irqWurtzPaud2-Wnt-f7JKNWjfB7q3eHfJ8efF0dp3cPVzdnJ3cJUZwzJMaUbKKSRAFExVkVckwNsJtjTkvSyYrY-sqN6WsUOgaZC1NBrkEE69mbLxDDpe6M9_FpkKvpi6Y2K1ubTcPSuaZABDiTxALnvEsGxQPfoGTbu7bOIRikHGeIUKE8iU0bCd4W6uZd1PtFwpBDZ6oiRpWr4bVq8ET9eWJ-oil-yv9eTm11U_hyoQIHC-B9-jF4t_C6vbidIjGnwydmPU</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>TERO, N.</creator><creator>NEUMEIER, H.</creator><creator>GUDAVALLI, R.</creator><creator>SCHLÖTTERER, C.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7TM</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>Silene tatarica microsatellites are frequently located in repetitive DNA</title><author>TERO, N. ; NEUMEIER, H. ; GUDAVALLI, R. ; SCHLÖTTERER, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5418-f1162d2605925d07db219904ef184bb26dcefd8cb6d15af06f6c70860c60ca223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Base Sequence</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Primers</topic><topic>DNA, Plant - chemistry</topic><topic>enrichment</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene Library</topic><topic>Genomics</topic><topic>microsatellite genesis</topic><topic>Microsatellite Repeats</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Polymerase Chain Reaction</topic><topic>proto‐microsatellite</topic><topic>repetitive DNA</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Sequence Alignment</topic><topic>Silene - genetics</topic><topic>Silene tatarica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TERO, N.</creatorcontrib><creatorcontrib>NEUMEIER, H.</creatorcontrib><creatorcontrib>GUDAVALLI, R.</creatorcontrib><creatorcontrib>SCHLÖTTERER, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TERO, N.</au><au>NEUMEIER, H.</au><au>GUDAVALLI, R.</au><au>SCHLÖTTERER, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silene tatarica microsatellites are frequently located in repetitive DNA</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2006-09</date><risdate>2006</risdate><volume>19</volume><issue>5</issue><spage>1612</spage><epage>1619</epage><pages>1612-1619</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (π = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16910990</pmid><doi>10.1111/j.1420-9101.2006.01118.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1010-061X
ispartof Journal of evolutionary biology, 2006-09, Vol.19 (5), p.1612-1619
issn 1010-061X
1420-9101
language eng
recordid cdi_proquest_miscellaneous_68750055
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Base Sequence
Cloning
Cloning, Molecular
Deoxyribonucleic acid
DNA
DNA Primers
DNA, Plant - chemistry
enrichment
Evolution
Evolution, Molecular
Gene Library
Genomics
microsatellite genesis
Microsatellite Repeats
Molecular Sequence Data
Mutation
Polymerase Chain Reaction
proto‐microsatellite
repetitive DNA
Repetitive Sequences, Nucleic Acid
Sequence Alignment
Silene - genetics
Silene tatarica
title Silene tatarica microsatellites are frequently located in repetitive DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silene%20tatarica%20microsatellites%20are%20frequently%20located%20in%20repetitive%20DNA&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=TERO,%20N.&rft.date=2006-09&rft.volume=19&rft.issue=5&rft.spage=1612&rft.epage=1619&rft.pages=1612-1619&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/j.1420-9101.2006.01118.x&rft_dat=%3Cproquest_cross%3E19474772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207447110&rft_id=info:pmid/16910990&rfr_iscdi=true