Silene tatarica microsatellites are frequently located in repetitive DNA
The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite gene...
Gespeichert in:
Veröffentlicht in: | Journal of evolutionary biology 2006-09, Vol.19 (5), p.1612-1619 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1619 |
---|---|
container_issue | 5 |
container_start_page | 1612 |
container_title | Journal of evolutionary biology |
container_volume | 19 |
creator | TERO, N. NEUMEIER, H. GUDAVALLI, R. SCHLÖTTERER, C. |
description | The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (π = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution. |
doi_str_mv | 10.1111/j.1420-9101.2006.01118.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68750055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19474772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5418-f1162d2605925d07db219904ef184bb26dcefd8cb6d15af06f6c70860c60ca223</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMorl9_QYIHb60z2SRtDx78_kD0oIK3kKYpZOm2a9JV99-buouCFw2BDJlnXmbmJYQipBjP0SRFziApEDBlADKF-JunH2tk6zuxHmNASEDiy4hshzABQMmF2CQjlJEoCtgi14-usa2lve61d0bTqTO-C7q3TeN6G6j2ltbevs5t2zcL2nQm5irqWurtzPaud2-Wnt-f7JKNWjfB7q3eHfJ8efF0dp3cPVzdnJ3cJUZwzJMaUbKKSRAFExVkVckwNsJtjTkvSyYrY-sqN6WsUOgaZC1NBrkEE69mbLxDDpe6M9_FpkKvpi6Y2K1ubTcPSuaZABDiTxALnvEsGxQPfoGTbu7bOIRikHGeIUKE8iU0bCd4W6uZd1PtFwpBDZ6oiRpWr4bVq8ET9eWJ-oil-yv9eTm11U_hyoQIHC-B9-jF4t_C6vbidIjGnwydmPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207447110</pqid></control><display><type>article</type><title>Silene tatarica microsatellites are frequently located in repetitive DNA</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>TERO, N. ; NEUMEIER, H. ; GUDAVALLI, R. ; SCHLÖTTERER, C.</creator><creatorcontrib>TERO, N. ; NEUMEIER, H. ; GUDAVALLI, R. ; SCHLÖTTERER, C.</creatorcontrib><description>The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (π = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution.</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/j.1420-9101.2006.01118.x</identifier><identifier>PMID: 16910990</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Base Sequence ; Cloning ; Cloning, Molecular ; Deoxyribonucleic acid ; DNA ; DNA Primers ; DNA, Plant - chemistry ; enrichment ; Evolution ; Evolution, Molecular ; Gene Library ; Genomics ; microsatellite genesis ; Microsatellite Repeats ; Molecular Sequence Data ; Mutation ; Polymerase Chain Reaction ; proto‐microsatellite ; repetitive DNA ; Repetitive Sequences, Nucleic Acid ; Sequence Alignment ; Silene - genetics ; Silene tatarica</subject><ispartof>Journal of evolutionary biology, 2006-09, Vol.19 (5), p.1612-1619</ispartof><rights>2006 The Authors Journal Compilation 2006 European Society for Evolutionary Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5418-f1162d2605925d07db219904ef184bb26dcefd8cb6d15af06f6c70860c60ca223</citedby><cites>FETCH-LOGICAL-c5418-f1162d2605925d07db219904ef184bb26dcefd8cb6d15af06f6c70860c60ca223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1420-9101.2006.01118.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1420-9101.2006.01118.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16910990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>TERO, N.</creatorcontrib><creatorcontrib>NEUMEIER, H.</creatorcontrib><creatorcontrib>GUDAVALLI, R.</creatorcontrib><creatorcontrib>SCHLÖTTERER, C.</creatorcontrib><title>Silene tatarica microsatellites are frequently located in repetitive DNA</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (π = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution.</description><subject>Base Sequence</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Primers</subject><subject>DNA, Plant - chemistry</subject><subject>enrichment</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene Library</subject><subject>Genomics</subject><subject>microsatellite genesis</subject><subject>Microsatellite Repeats</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Polymerase Chain Reaction</subject><subject>proto‐microsatellite</subject><subject>repetitive DNA</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Sequence Alignment</subject><subject>Silene - genetics</subject><subject>Silene tatarica</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMorl9_QYIHb60z2SRtDx78_kD0oIK3kKYpZOm2a9JV99-buouCFw2BDJlnXmbmJYQipBjP0SRFziApEDBlADKF-JunH2tk6zuxHmNASEDiy4hshzABQMmF2CQjlJEoCtgi14-usa2lve61d0bTqTO-C7q3TeN6G6j2ltbevs5t2zcL2nQm5irqWurtzPaud2-Wnt-f7JKNWjfB7q3eHfJ8efF0dp3cPVzdnJ3cJUZwzJMaUbKKSRAFExVkVckwNsJtjTkvSyYrY-sqN6WsUOgaZC1NBrkEE69mbLxDDpe6M9_FpkKvpi6Y2K1ubTcPSuaZABDiTxALnvEsGxQPfoGTbu7bOIRikHGeIUKE8iU0bCd4W6uZd1PtFwpBDZ6oiRpWr4bVq8ET9eWJ-oil-yv9eTm11U_hyoQIHC-B9-jF4t_C6vbidIjGnwydmPU</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>TERO, N.</creator><creator>NEUMEIER, H.</creator><creator>GUDAVALLI, R.</creator><creator>SCHLÖTTERER, C.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7TM</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>Silene tatarica microsatellites are frequently located in repetitive DNA</title><author>TERO, N. ; NEUMEIER, H. ; GUDAVALLI, R. ; SCHLÖTTERER, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5418-f1162d2605925d07db219904ef184bb26dcefd8cb6d15af06f6c70860c60ca223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Base Sequence</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Primers</topic><topic>DNA, Plant - chemistry</topic><topic>enrichment</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene Library</topic><topic>Genomics</topic><topic>microsatellite genesis</topic><topic>Microsatellite Repeats</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Polymerase Chain Reaction</topic><topic>proto‐microsatellite</topic><topic>repetitive DNA</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Sequence Alignment</topic><topic>Silene - genetics</topic><topic>Silene tatarica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TERO, N.</creatorcontrib><creatorcontrib>NEUMEIER, H.</creatorcontrib><creatorcontrib>GUDAVALLI, R.</creatorcontrib><creatorcontrib>SCHLÖTTERER, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TERO, N.</au><au>NEUMEIER, H.</au><au>GUDAVALLI, R.</au><au>SCHLÖTTERER, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silene tatarica microsatellites are frequently located in repetitive DNA</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2006-09</date><risdate>2006</risdate><volume>19</volume><issue>5</issue><spage>1612</spage><epage>1619</epage><pages>1612-1619</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (π = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16910990</pmid><doi>10.1111/j.1420-9101.2006.01118.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1010-061X |
ispartof | Journal of evolutionary biology, 2006-09, Vol.19 (5), p.1612-1619 |
issn | 1010-061X 1420-9101 |
language | eng |
recordid | cdi_proquest_miscellaneous_68750055 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Base Sequence Cloning Cloning, Molecular Deoxyribonucleic acid DNA DNA Primers DNA, Plant - chemistry enrichment Evolution Evolution, Molecular Gene Library Genomics microsatellite genesis Microsatellite Repeats Molecular Sequence Data Mutation Polymerase Chain Reaction proto‐microsatellite repetitive DNA Repetitive Sequences, Nucleic Acid Sequence Alignment Silene - genetics Silene tatarica |
title | Silene tatarica microsatellites are frequently located in repetitive DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silene%20tatarica%20microsatellites%20are%20frequently%20located%20in%20repetitive%20DNA&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=TERO,%20N.&rft.date=2006-09&rft.volume=19&rft.issue=5&rft.spage=1612&rft.epage=1619&rft.pages=1612-1619&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/j.1420-9101.2006.01118.x&rft_dat=%3Cproquest_cross%3E19474772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207447110&rft_id=info:pmid/16910990&rfr_iscdi=true |