Comparison of Photosynthetic Damage from Arthropod Herbivory and Pathogen Infection in Understory Hardwood Saplings
Arthropods and pathogens damage leaves in natural ecosystems and may reduce photosynthesis at some distance away from directly injured tissue. We quantified the indirect effects of naturally occurring biotic damage on leaf-level photosystem II operating efficiency ($\Phi _{\text{PSII}}$) of 11 under...
Gespeichert in:
Veröffentlicht in: | Oecologia 2006-08, Vol.149 (2), p.221-232 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 2 |
container_start_page | 221 |
container_title | Oecologia |
container_volume | 149 |
creator | Aldea, Mihai Hamilton, Jason G. Resti, Joseph P. Zangerl, Arthur R. Berenbaum, May R. Frank, Thomas D. DeLucia, Evan H. |
description | Arthropods and pathogens damage leaves in natural ecosystems and may reduce photosynthesis at some distance away from directly injured tissue. We quantified the indirect effects of naturally occurring biotic damage on leaf-level photosystem II operating efficiency ($\Phi _{\text{PSII}}$) of 11 understory hardwood tree species using chlorophyll fluorescence and thermal imaging. Maps of fluorescence parameters and leaf temperature were stacked for each leaf and analyzed using a multivariate method adapted from the field of quantitative remote sensing. Two tree species, Quercus velutina and Cercis canadensis, grew in plots exposed to ambient and elevated atmospheric CO₂ and were infected with Phyllosticta fungus, providing a limited opportunity to examine the potential interaction of this element of global change and biotic damage on photosynthesis. Areas surrounding damage had depressed$\Phi _{\text{PSII}}$and increased down-regulation of PSII, and there was no evidence of compensation in the remaining tissue. The depression of$\Phi _{\text{PSII}}$caused by fungal infections and galls extended >2.5 times further from the visible damage and was ∼40% more depressed than chewing damage. Areas of depressed$\Phi _{\text{PSII}}$around fungal infections on oaks growing in elevated CO₂ were more than 5 times larger than those grown in ambient conditions, suggesting that this element of global change may influence the indirect effects of biotic damage on photosynthesis. For a single Q. velutina sapling, the area of reduced$\Phi _{\text{PSII}}$was equal to the total area directly damaged by insects and fungi. Thus, estimates based only on the direct effect of biotic agents may greatly under-estimate their actual impact on photosynthesis. |
doi_str_mv | 10.1007/s00442-006-0444-x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68748718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20445992</jstor_id><sourcerecordid>20445992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-162ac451fe925b5678c9ecee46dff872b579a9b07c31154596a73008120870e13</originalsourceid><addsrcrecordid>eNqF0U9vFCEYBnBibOxa_QAeNMREb6MvDAxwbNY_26SJTbRnwjCwO5sZGGFWu9--rLtpk148QcLvfQg8CL0h8IkAiM8ZgDFaATRV2bDq7hlaEFbTiqhaPUcLAKoqyZk6Ry9z3gIQRjh_gc5JI7ikFBYoL-M4mdTnGHD0-GYT55j3Yd64ubf4ixnN2mGf4ogv07xJcYodXrnU9n9i2mMTOnxj5k1cu4Cvgnd27ktQH_Bt6FzK8wGtTOr-xjL300xDH9b5FTrzZsju9Wm9QLffvv5arqrrH9-vlpfXlWWCzxVpqLGME-8U5S1vhLTKWedY03kvBW25UEa1IGxNCGdcNUbUAJJQkAIcqS_Qx2PulOLvncuzHvts3TCY4OIu60YKJgWR_4UUBFEltMD3T-A27lIoj9CSAldSCFUQOSKbYs7JeT2lfjRprwnoQ2_62JsuvelDb_quzLw7Be_a0XWPE6eiCvhwAiZbM_hkgu3zo5PAFPvn3h7d9vD5D-e03MOVovU9QV-qEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820598779</pqid></control><display><type>article</type><title>Comparison of Photosynthetic Damage from Arthropod Herbivory and Pathogen Infection in Understory Hardwood Saplings</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Aldea, Mihai ; Hamilton, Jason G. ; Resti, Joseph P. ; Zangerl, Arthur R. ; Berenbaum, May R. ; Frank, Thomas D. ; DeLucia, Evan H.</creator><creatorcontrib>Aldea, Mihai ; Hamilton, Jason G. ; Resti, Joseph P. ; Zangerl, Arthur R. ; Berenbaum, May R. ; Frank, Thomas D. ; DeLucia, Evan H.</creatorcontrib><description>Arthropods and pathogens damage leaves in natural ecosystems and may reduce photosynthesis at some distance away from directly injured tissue. We quantified the indirect effects of naturally occurring biotic damage on leaf-level photosystem II operating efficiency ($\Phi _{\text{PSII}}$) of 11 understory hardwood tree species using chlorophyll fluorescence and thermal imaging. Maps of fluorescence parameters and leaf temperature were stacked for each leaf and analyzed using a multivariate method adapted from the field of quantitative remote sensing. Two tree species, Quercus velutina and Cercis canadensis, grew in plots exposed to ambient and elevated atmospheric CO₂ and were infected with Phyllosticta fungus, providing a limited opportunity to examine the potential interaction of this element of global change and biotic damage on photosynthesis. Areas surrounding damage had depressed$\Phi _{\text{PSII}}$and increased down-regulation of PSII, and there was no evidence of compensation in the remaining tissue. The depression of$\Phi _{\text{PSII}}$caused by fungal infections and galls extended >2.5 times further from the visible damage and was ∼40% more depressed than chewing damage. Areas of depressed$\Phi _{\text{PSII}}$around fungal infections on oaks growing in elevated CO₂ were more than 5 times larger than those grown in ambient conditions, suggesting that this element of global change may influence the indirect effects of biotic damage on photosynthesis. For a single Q. velutina sapling, the area of reduced$\Phi _{\text{PSII}}$was equal to the total area directly damaged by insects and fungi. Thus, estimates based only on the direct effect of biotic agents may greatly under-estimate their actual impact on photosynthesis.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-006-0444-x</identifier><identifier>PMID: 16758220</identifier><identifier>CODEN: OECOBX</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Arthropoda ; Arthropods - physiology ; Autoecology ; Biological and medical sciences ; Cercis canadensis ; Chlorophylls ; Fabaceae - metabolism ; Fabaceae - microbiology ; Feeding Behavior ; Flood damage ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Fungal infections ; Fungi - physiology ; Herbivores ; Herbivory ; Image analysis ; Infestation ; Leaves ; Mastication ; Pathogens ; Photosynthesis ; Photosynthesis - physiology ; Plant Animal Interactions ; Plant Leaves - metabolism ; Plant Leaves - microbiology ; Plant species ; Plants ; Plants and fungi ; Quercus - metabolism ; Quercus - microbiology ; Remote sensing ; Trees - metabolism ; Trees - microbiology ; Understory ; Velutina</subject><ispartof>Oecologia, 2006-08, Vol.149 (2), p.221-232</ispartof><rights>Copyright 2006 Springer-Verlag Berlin Heidelberg</rights><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-162ac451fe925b5678c9ecee46dff872b579a9b07c31154596a73008120870e13</citedby><cites>FETCH-LOGICAL-c475t-162ac451fe925b5678c9ecee46dff872b579a9b07c31154596a73008120870e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20445992$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20445992$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18049420$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16758220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aldea, Mihai</creatorcontrib><creatorcontrib>Hamilton, Jason G.</creatorcontrib><creatorcontrib>Resti, Joseph P.</creatorcontrib><creatorcontrib>Zangerl, Arthur R.</creatorcontrib><creatorcontrib>Berenbaum, May R.</creatorcontrib><creatorcontrib>Frank, Thomas D.</creatorcontrib><creatorcontrib>DeLucia, Evan H.</creatorcontrib><title>Comparison of Photosynthetic Damage from Arthropod Herbivory and Pathogen Infection in Understory Hardwood Saplings</title><title>Oecologia</title><addtitle>Oecologia</addtitle><description>Arthropods and pathogens damage leaves in natural ecosystems and may reduce photosynthesis at some distance away from directly injured tissue. We quantified the indirect effects of naturally occurring biotic damage on leaf-level photosystem II operating efficiency ($\Phi _{\text{PSII}}$) of 11 understory hardwood tree species using chlorophyll fluorescence and thermal imaging. Maps of fluorescence parameters and leaf temperature were stacked for each leaf and analyzed using a multivariate method adapted from the field of quantitative remote sensing. Two tree species, Quercus velutina and Cercis canadensis, grew in plots exposed to ambient and elevated atmospheric CO₂ and were infected with Phyllosticta fungus, providing a limited opportunity to examine the potential interaction of this element of global change and biotic damage on photosynthesis. Areas surrounding damage had depressed$\Phi _{\text{PSII}}$and increased down-regulation of PSII, and there was no evidence of compensation in the remaining tissue. The depression of$\Phi _{\text{PSII}}$caused by fungal infections and galls extended >2.5 times further from the visible damage and was ∼40% more depressed than chewing damage. Areas of depressed$\Phi _{\text{PSII}}$around fungal infections on oaks growing in elevated CO₂ were more than 5 times larger than those grown in ambient conditions, suggesting that this element of global change may influence the indirect effects of biotic damage on photosynthesis. For a single Q. velutina sapling, the area of reduced$\Phi _{\text{PSII}}$was equal to the total area directly damaged by insects and fungi. Thus, estimates based only on the direct effect of biotic agents may greatly under-estimate their actual impact on photosynthesis.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Arthropoda</subject><subject>Arthropods - physiology</subject><subject>Autoecology</subject><subject>Biological and medical sciences</subject><subject>Cercis canadensis</subject><subject>Chlorophylls</subject><subject>Fabaceae - metabolism</subject><subject>Fabaceae - microbiology</subject><subject>Feeding Behavior</subject><subject>Flood damage</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal infections</subject><subject>Fungi - physiology</subject><subject>Herbivores</subject><subject>Herbivory</subject><subject>Image analysis</subject><subject>Infestation</subject><subject>Leaves</subject><subject>Mastication</subject><subject>Pathogens</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Plant Animal Interactions</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - microbiology</subject><subject>Plant species</subject><subject>Plants</subject><subject>Plants and fungi</subject><subject>Quercus - metabolism</subject><subject>Quercus - microbiology</subject><subject>Remote sensing</subject><subject>Trees - metabolism</subject><subject>Trees - microbiology</subject><subject>Understory</subject><subject>Velutina</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U9vFCEYBnBibOxa_QAeNMREb6MvDAxwbNY_26SJTbRnwjCwO5sZGGFWu9--rLtpk148QcLvfQg8CL0h8IkAiM8ZgDFaATRV2bDq7hlaEFbTiqhaPUcLAKoqyZk6Ry9z3gIQRjh_gc5JI7ikFBYoL-M4mdTnGHD0-GYT55j3Yd64ubf4ixnN2mGf4ogv07xJcYodXrnU9n9i2mMTOnxj5k1cu4Cvgnd27ktQH_Bt6FzK8wGtTOr-xjL300xDH9b5FTrzZsju9Wm9QLffvv5arqrrH9-vlpfXlWWCzxVpqLGME-8U5S1vhLTKWedY03kvBW25UEa1IGxNCGdcNUbUAJJQkAIcqS_Qx2PulOLvncuzHvts3TCY4OIu60YKJgWR_4UUBFEltMD3T-A27lIoj9CSAldSCFUQOSKbYs7JeT2lfjRprwnoQ2_62JsuvelDb_quzLw7Be_a0XWPE6eiCvhwAiZbM_hkgu3zo5PAFPvn3h7d9vD5D-e03MOVovU9QV-qEw</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Aldea, Mihai</creator><creator>Hamilton, Jason G.</creator><creator>Resti, Joseph P.</creator><creator>Zangerl, Arthur R.</creator><creator>Berenbaum, May R.</creator><creator>Frank, Thomas D.</creator><creator>DeLucia, Evan H.</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Comparison of Photosynthetic Damage from Arthropod Herbivory and Pathogen Infection in Understory Hardwood Saplings</title><author>Aldea, Mihai ; Hamilton, Jason G. ; Resti, Joseph P. ; Zangerl, Arthur R. ; Berenbaum, May R. ; Frank, Thomas D. ; DeLucia, Evan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-162ac451fe925b5678c9ecee46dff872b579a9b07c31154596a73008120870e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Arthropoda</topic><topic>Arthropods - physiology</topic><topic>Autoecology</topic><topic>Biological and medical sciences</topic><topic>Cercis canadensis</topic><topic>Chlorophylls</topic><topic>Fabaceae - metabolism</topic><topic>Fabaceae - microbiology</topic><topic>Feeding Behavior</topic><topic>Flood damage</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal infections</topic><topic>Fungi - physiology</topic><topic>Herbivores</topic><topic>Herbivory</topic><topic>Image analysis</topic><topic>Infestation</topic><topic>Leaves</topic><topic>Mastication</topic><topic>Pathogens</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Plant Animal Interactions</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - microbiology</topic><topic>Plant species</topic><topic>Plants</topic><topic>Plants and fungi</topic><topic>Quercus - metabolism</topic><topic>Quercus - microbiology</topic><topic>Remote sensing</topic><topic>Trees - metabolism</topic><topic>Trees - microbiology</topic><topic>Understory</topic><topic>Velutina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldea, Mihai</creatorcontrib><creatorcontrib>Hamilton, Jason G.</creatorcontrib><creatorcontrib>Resti, Joseph P.</creatorcontrib><creatorcontrib>Zangerl, Arthur R.</creatorcontrib><creatorcontrib>Berenbaum, May R.</creatorcontrib><creatorcontrib>Frank, Thomas D.</creatorcontrib><creatorcontrib>DeLucia, Evan H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldea, Mihai</au><au>Hamilton, Jason G.</au><au>Resti, Joseph P.</au><au>Zangerl, Arthur R.</au><au>Berenbaum, May R.</au><au>Frank, Thomas D.</au><au>DeLucia, Evan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Photosynthetic Damage from Arthropod Herbivory and Pathogen Infection in Understory Hardwood Saplings</atitle><jtitle>Oecologia</jtitle><addtitle>Oecologia</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>149</volume><issue>2</issue><spage>221</spage><epage>232</epage><pages>221-232</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><coden>OECOBX</coden><abstract>Arthropods and pathogens damage leaves in natural ecosystems and may reduce photosynthesis at some distance away from directly injured tissue. We quantified the indirect effects of naturally occurring biotic damage on leaf-level photosystem II operating efficiency ($\Phi _{\text{PSII}}$) of 11 understory hardwood tree species using chlorophyll fluorescence and thermal imaging. Maps of fluorescence parameters and leaf temperature were stacked for each leaf and analyzed using a multivariate method adapted from the field of quantitative remote sensing. Two tree species, Quercus velutina and Cercis canadensis, grew in plots exposed to ambient and elevated atmospheric CO₂ and were infected with Phyllosticta fungus, providing a limited opportunity to examine the potential interaction of this element of global change and biotic damage on photosynthesis. Areas surrounding damage had depressed$\Phi _{\text{PSII}}$and increased down-regulation of PSII, and there was no evidence of compensation in the remaining tissue. The depression of$\Phi _{\text{PSII}}$caused by fungal infections and galls extended >2.5 times further from the visible damage and was ∼40% more depressed than chewing damage. Areas of depressed$\Phi _{\text{PSII}}$around fungal infections on oaks growing in elevated CO₂ were more than 5 times larger than those grown in ambient conditions, suggesting that this element of global change may influence the indirect effects of biotic damage on photosynthesis. For a single Q. velutina sapling, the area of reduced$\Phi _{\text{PSII}}$was equal to the total area directly damaged by insects and fungi. Thus, estimates based only on the direct effect of biotic agents may greatly under-estimate their actual impact on photosynthesis.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>16758220</pmid><doi>10.1007/s00442-006-0444-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8549 |
ispartof | Oecologia, 2006-08, Vol.149 (2), p.221-232 |
issn | 0029-8549 1432-1939 |
language | eng |
recordid | cdi_proquest_miscellaneous_68748718 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Animal and plant ecology Animal, plant and microbial ecology Animals Arthropoda Arthropods - physiology Autoecology Biological and medical sciences Cercis canadensis Chlorophylls Fabaceae - metabolism Fabaceae - microbiology Feeding Behavior Flood damage Fluorescence Fundamental and applied biological sciences. Psychology Fungal infections Fungi - physiology Herbivores Herbivory Image analysis Infestation Leaves Mastication Pathogens Photosynthesis Photosynthesis - physiology Plant Animal Interactions Plant Leaves - metabolism Plant Leaves - microbiology Plant species Plants Plants and fungi Quercus - metabolism Quercus - microbiology Remote sensing Trees - metabolism Trees - microbiology Understory Velutina |
title | Comparison of Photosynthetic Damage from Arthropod Herbivory and Pathogen Infection in Understory Hardwood Saplings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Photosynthetic%20Damage%20from%20Arthropod%20Herbivory%20and%20Pathogen%20Infection%20in%20Understory%20Hardwood%20Saplings&rft.jtitle=Oecologia&rft.au=Aldea,%20Mihai&rft.date=2006-08-01&rft.volume=149&rft.issue=2&rft.spage=221&rft.epage=232&rft.pages=221-232&rft.issn=0029-8549&rft.eissn=1432-1939&rft.coden=OECOBX&rft_id=info:doi/10.1007/s00442-006-0444-x&rft_dat=%3Cjstor_proqu%3E20445992%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820598779&rft_id=info:pmid/16758220&rft_jstor_id=20445992&rfr_iscdi=true |