Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses

To enhance fungal disease resistance, wheat plants (cv. Bobwhite) were engineered to constitutively express the potent antimicrobial protein Ace-AMP1 from Allium cepa, driven by a maize ubiquitin promoter along with its first intron. The bar gene was used for selection of putative transformants on m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transgenic research 2006-08, Vol.15 (4), p.435-446, Article 435
Hauptverfasser: ROY-BARMAN, Subhankar, SAUTTER, Christof, CHATTOO, Bharat B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 4
container_start_page 435
container_title Transgenic research
container_volume 15
creator ROY-BARMAN, Subhankar
SAUTTER, Christof
CHATTOO, Bharat B
description To enhance fungal disease resistance, wheat plants (cv. Bobwhite) were engineered to constitutively express the potent antimicrobial protein Ace-AMP1 from Allium cepa, driven by a maize ubiquitin promoter along with its first intron. The bar gene was used for selection of putative transformants on medium containing phosphinothricin (PPT). Transgene inheritance, integration and stability of expression were confirmed over two generations by PCR, Southern, northern and western blot analyses, respectively. The levels of Ace-AMP1 in different transgenic lines correlated with the transcript levels of the transgene. Up to 50% increase in resistance to Blumeria graminis f. sp. tritici was detected in detached leaf assays. In ears of transgenic wheat inoculated with Neovossia indica, Ace-AMP1 intensified expression of defense-related genes. Elevated levels of salicylic acid and of transcripts of phenylalanine ammonia lyase (PAL), glucanase (PR2) and chitinase (PR3) in the transgenic plants indicated manifestation of systemic acquired resistance (SAR).
doi_str_mv 10.1007/s11248-006-0016-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68747609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68747609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-1f17fb5b8b36ba400c12d1f305fbb8e5eb9eeeb64b95fc248cf15101383e13163</originalsourceid><addsrcrecordid>eNqFkUFvFCEUx4nR2LX6AbwYYmJvU3nLDAPHTVOrSZv2oGcCzKNLM8uMwGj77WXdTZp48UB4gR9_8t6PkPfAzoGx_nMGWLeyYUzUBaKBF2QFXc8bxYV8SVZMiXUjJagT8ibnh8owJvlrcgJCMdG27Yo8Xj7OCXMOU6STp2WLdAxzGGhJJmaPic5pKhgi3ThsNjd3QGv99_IeY3D09xZNoRi3JjrM1MQS_BLvzUiNK-FXKE_1bKADeowZaf1rnmqR35JX3owZ3x33U_Ljy-X3i6_N9e3Vt4vNdeO47EsDHnpvOystF9a0jDlYD-A567y1Eju0ChGtaK3qvKvTcB46YMAlR-Ag-Ck5O-TWPn4umIvehexwHE3EaclayL7tBVP_BUHJltVhVvDjP-DDtKRYm9B9t2Y1qpcVggPk0pRzQq_nFHYmPWlgei9PH-TpKk_v5el98Idj8GJ3ODy_ONqqwKcjYLIzo68WXMjPnGSdVFLxPx6Joqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>752009378</pqid></control><display><type>article</type><title>Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>ROY-BARMAN, Subhankar ; SAUTTER, Christof ; CHATTOO, Bharat B</creator><creatorcontrib>ROY-BARMAN, Subhankar ; SAUTTER, Christof ; CHATTOO, Bharat B</creatorcontrib><description>To enhance fungal disease resistance, wheat plants (cv. Bobwhite) were engineered to constitutively express the potent antimicrobial protein Ace-AMP1 from Allium cepa, driven by a maize ubiquitin promoter along with its first intron. The bar gene was used for selection of putative transformants on medium containing phosphinothricin (PPT). Transgene inheritance, integration and stability of expression were confirmed over two generations by PCR, Southern, northern and western blot analyses, respectively. The levels of Ace-AMP1 in different transgenic lines correlated with the transcript levels of the transgene. Up to 50% increase in resistance to Blumeria graminis f. sp. tritici was detected in detached leaf assays. In ears of transgenic wheat inoculated with Neovossia indica, Ace-AMP1 intensified expression of defense-related genes. Elevated levels of salicylic acid and of transcripts of phenylalanine ammonia lyase (PAL), glucanase (PR2) and chitinase (PR3) in the transgenic plants indicated manifestation of systemic acquired resistance (SAR).</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-006-0016-1</identifier><identifier>PMID: 16906444</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Allium cepa ; Ammonia ; Antifungal activity ; Antifungal Agents - pharmacology ; Bar gene ; Biological and medical sciences ; Biotechnology ; Blotting, Northern ; Blumeria graminis ; Chitinase ; Crop diseases ; Disease resistance ; Fundamental and applied biological sciences. Psychology ; Genetic engineering ; Genetic technics ; Genetic Techniques ; Genetic Vectors ; Heredity ; Immunity, Innate ; Methods. Procedures. Technologies ; Models, Genetic ; Phenolsulfonphthalein - analogs &amp; derivatives ; Phenolsulfonphthalein - pharmacology ; Phenylalanine ; Phenylalanine Ammonia-Lyase - genetics ; Phosphinothricin ; Plant diseases ; Plant Proteins - genetics ; Plants, Genetically Modified ; Plasmids - metabolism ; Polymerase Chain Reaction ; Salicylic acid ; Salicylic Acid - metabolism ; Transgenes ; Transgenic animals and transgenic plants ; Transgenic plants ; Triticum - genetics ; Triticum aestivum ; Ubiquitin ; Zea mays</subject><ispartof>Transgenic research, 2006-08, Vol.15 (4), p.435-446, Article 435</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-1f17fb5b8b36ba400c12d1f305fbb8e5eb9eeeb64b95fc248cf15101383e13163</citedby><cites>FETCH-LOGICAL-c387t-1f17fb5b8b36ba400c12d1f305fbb8e5eb9eeeb64b95fc248cf15101383e13163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18058989$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16906444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ROY-BARMAN, Subhankar</creatorcontrib><creatorcontrib>SAUTTER, Christof</creatorcontrib><creatorcontrib>CHATTOO, Bharat B</creatorcontrib><title>Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><description>To enhance fungal disease resistance, wheat plants (cv. Bobwhite) were engineered to constitutively express the potent antimicrobial protein Ace-AMP1 from Allium cepa, driven by a maize ubiquitin promoter along with its first intron. The bar gene was used for selection of putative transformants on medium containing phosphinothricin (PPT). Transgene inheritance, integration and stability of expression were confirmed over two generations by PCR, Southern, northern and western blot analyses, respectively. The levels of Ace-AMP1 in different transgenic lines correlated with the transcript levels of the transgene. Up to 50% increase in resistance to Blumeria graminis f. sp. tritici was detected in detached leaf assays. In ears of transgenic wheat inoculated with Neovossia indica, Ace-AMP1 intensified expression of defense-related genes. Elevated levels of salicylic acid and of transcripts of phenylalanine ammonia lyase (PAL), glucanase (PR2) and chitinase (PR3) in the transgenic plants indicated manifestation of systemic acquired resistance (SAR).</description><subject>Allium cepa</subject><subject>Ammonia</subject><subject>Antifungal activity</subject><subject>Antifungal Agents - pharmacology</subject><subject>Bar gene</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Blotting, Northern</subject><subject>Blumeria graminis</subject><subject>Chitinase</subject><subject>Crop diseases</subject><subject>Disease resistance</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>Genetic Techniques</subject><subject>Genetic Vectors</subject><subject>Heredity</subject><subject>Immunity, Innate</subject><subject>Methods. Procedures. Technologies</subject><subject>Models, Genetic</subject><subject>Phenolsulfonphthalein - analogs &amp; derivatives</subject><subject>Phenolsulfonphthalein - pharmacology</subject><subject>Phenylalanine</subject><subject>Phenylalanine Ammonia-Lyase - genetics</subject><subject>Phosphinothricin</subject><subject>Plant diseases</subject><subject>Plant Proteins - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Plasmids - metabolism</subject><subject>Polymerase Chain Reaction</subject><subject>Salicylic acid</subject><subject>Salicylic Acid - metabolism</subject><subject>Transgenes</subject><subject>Transgenic animals and transgenic plants</subject><subject>Transgenic plants</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Ubiquitin</subject><subject>Zea mays</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFvFCEUx4nR2LX6AbwYYmJvU3nLDAPHTVOrSZv2oGcCzKNLM8uMwGj77WXdTZp48UB4gR9_8t6PkPfAzoGx_nMGWLeyYUzUBaKBF2QFXc8bxYV8SVZMiXUjJagT8ibnh8owJvlrcgJCMdG27Yo8Xj7OCXMOU6STp2WLdAxzGGhJJmaPic5pKhgi3ThsNjd3QGv99_IeY3D09xZNoRi3JjrM1MQS_BLvzUiNK-FXKE_1bKADeowZaf1rnmqR35JX3owZ3x33U_Ljy-X3i6_N9e3Vt4vNdeO47EsDHnpvOystF9a0jDlYD-A567y1Eju0ChGtaK3qvKvTcB46YMAlR-Ag-Ck5O-TWPn4umIvehexwHE3EaclayL7tBVP_BUHJltVhVvDjP-DDtKRYm9B9t2Y1qpcVggPk0pRzQq_nFHYmPWlgei9PH-TpKk_v5el98Idj8GJ3ODy_ONqqwKcjYLIzo68WXMjPnGSdVFLxPx6Joqw</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>ROY-BARMAN, Subhankar</creator><creator>SAUTTER, Christof</creator><creator>CHATTOO, Bharat B</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7QO</scope><scope>7T7</scope><scope>C1K</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses</title><author>ROY-BARMAN, Subhankar ; SAUTTER, Christof ; CHATTOO, Bharat B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-1f17fb5b8b36ba400c12d1f305fbb8e5eb9eeeb64b95fc248cf15101383e13163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Allium cepa</topic><topic>Ammonia</topic><topic>Antifungal activity</topic><topic>Antifungal Agents - pharmacology</topic><topic>Bar gene</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Blotting, Northern</topic><topic>Blumeria graminis</topic><topic>Chitinase</topic><topic>Crop diseases</topic><topic>Disease resistance</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>Genetic Techniques</topic><topic>Genetic Vectors</topic><topic>Heredity</topic><topic>Immunity, Innate</topic><topic>Methods. Procedures. Technologies</topic><topic>Models, Genetic</topic><topic>Phenolsulfonphthalein - analogs &amp; derivatives</topic><topic>Phenolsulfonphthalein - pharmacology</topic><topic>Phenylalanine</topic><topic>Phenylalanine Ammonia-Lyase - genetics</topic><topic>Phosphinothricin</topic><topic>Plant diseases</topic><topic>Plant Proteins - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Plasmids - metabolism</topic><topic>Polymerase Chain Reaction</topic><topic>Salicylic acid</topic><topic>Salicylic Acid - metabolism</topic><topic>Transgenes</topic><topic>Transgenic animals and transgenic plants</topic><topic>Transgenic plants</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Ubiquitin</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROY-BARMAN, Subhankar</creatorcontrib><creatorcontrib>SAUTTER, Christof</creatorcontrib><creatorcontrib>CHATTOO, Bharat B</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROY-BARMAN, Subhankar</au><au>SAUTTER, Christof</au><au>CHATTOO, Bharat B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses</atitle><jtitle>Transgenic research</jtitle><addtitle>Transgenic Res</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>15</volume><issue>4</issue><spage>435</spage><epage>446</epage><pages>435-446</pages><artnum>435</artnum><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>To enhance fungal disease resistance, wheat plants (cv. Bobwhite) were engineered to constitutively express the potent antimicrobial protein Ace-AMP1 from Allium cepa, driven by a maize ubiquitin promoter along with its first intron. The bar gene was used for selection of putative transformants on medium containing phosphinothricin (PPT). Transgene inheritance, integration and stability of expression were confirmed over two generations by PCR, Southern, northern and western blot analyses, respectively. The levels of Ace-AMP1 in different transgenic lines correlated with the transcript levels of the transgene. Up to 50% increase in resistance to Blumeria graminis f. sp. tritici was detected in detached leaf assays. In ears of transgenic wheat inoculated with Neovossia indica, Ace-AMP1 intensified expression of defense-related genes. Elevated levels of salicylic acid and of transcripts of phenylalanine ammonia lyase (PAL), glucanase (PR2) and chitinase (PR3) in the transgenic plants indicated manifestation of systemic acquired resistance (SAR).</abstract><cop>Dordrecht</cop><pub>Springer</pub><pmid>16906444</pmid><doi>10.1007/s11248-006-0016-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8819
ispartof Transgenic research, 2006-08, Vol.15 (4), p.435-446, Article 435
issn 0962-8819
1573-9368
language eng
recordid cdi_proquest_miscellaneous_68747609
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Allium cepa
Ammonia
Antifungal activity
Antifungal Agents - pharmacology
Bar gene
Biological and medical sciences
Biotechnology
Blotting, Northern
Blumeria graminis
Chitinase
Crop diseases
Disease resistance
Fundamental and applied biological sciences. Psychology
Genetic engineering
Genetic technics
Genetic Techniques
Genetic Vectors
Heredity
Immunity, Innate
Methods. Procedures. Technologies
Models, Genetic
Phenolsulfonphthalein - analogs & derivatives
Phenolsulfonphthalein - pharmacology
Phenylalanine
Phenylalanine Ammonia-Lyase - genetics
Phosphinothricin
Plant diseases
Plant Proteins - genetics
Plants, Genetically Modified
Plasmids - metabolism
Polymerase Chain Reaction
Salicylic acid
Salicylic Acid - metabolism
Transgenes
Transgenic animals and transgenic plants
Transgenic plants
Triticum - genetics
Triticum aestivum
Ubiquitin
Zea mays
title Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20the%20lipid%20transfer%20protein%20Ace-AMP1%20in%20transgenic%20wheat%20enhances%20antifungal%20activity%20and%20defense%20responses&rft.jtitle=Transgenic%20research&rft.au=ROY-BARMAN,%20Subhankar&rft.date=2006-08-01&rft.volume=15&rft.issue=4&rft.spage=435&rft.epage=446&rft.pages=435-446&rft.artnum=435&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-006-0016-1&rft_dat=%3Cproquest_cross%3E68747609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=752009378&rft_id=info:pmid/16906444&rfr_iscdi=true