Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels
The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a st...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2006-08, Vol.78 (16), p.5639-5644 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5644 |
---|---|
container_issue | 16 |
container_start_page | 5639 |
container_title | Analytical chemistry (Washington) |
container_volume | 78 |
creator | Stadermann, Michael McBrady, Adam D Dick, Brian Reid, Vanessa R Noy, Aleksandr Synovec, Robert E Bakajin, Olgica |
description | The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 μm × 100 μm square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 °C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming. |
doi_str_mv | 10.1021/ac060266+ |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68745738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1149515281</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-a5f56e63bf91f7660b861e09d1b130ae00a4871eeb57b8be3e531c89a2185efd3</originalsourceid><addsrcrecordid>eNpl0F1rFDEUBuAgit1WL_wDMogVQUZPJpuPvdRBq9DVwm4teBNOZs90p53NrEkG7L83ZVcX9Cpw8vByzsvYMw5vOVT8HTagoFLqzQM24bKCUhlTPWQTABBlpQGO2HGMNwCcA1eP2RFXM1Aa1IR1l30K2GJMxRnGol6HYYNpuA64Xd8Vgy8Wnb_uqbzCvi9qDC6PvqIf0uioWCRM3eAx3BUXa4wUi84X864JQ4sudA0mWuVI9J76-IQ9arGP9HT_nrDLTx-X9efy_NvZl_r9eYlTkKlE2UpFSrh2xlutFDijOMFsxR0XgASAU6M5kZPaGUeCpOCNmWHFjaR2JU7Yq13uNgw_R4rJbrrYUN-jp2GMVhk9lVqYDF_8A2-GMfi8m624NpnBPXq9Q_moGAO1dhu6Tb7YcrD35ds_5Wf6fJ83ug2tDnBfdgane4Cxwb4N6JsuHpwBKcxMZ1fuXBcT_fr7j-HWKi20tMuLhf2xvKrF9_kHO8_-5c5jEw83_Lffb4JwpjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217887408</pqid></control><display><type>article</type><title>Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels</title><source>ACS Publications</source><creator>Stadermann, Michael ; McBrady, Adam D ; Dick, Brian ; Reid, Vanessa R ; Noy, Aleksandr ; Synovec, Robert E ; Bakajin, Olgica</creator><creatorcontrib>Stadermann, Michael ; McBrady, Adam D ; Dick, Brian ; Reid, Vanessa R ; Noy, Aleksandr ; Synovec, Robert E ; Bakajin, Olgica</creatorcontrib><description>The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 μm × 100 μm square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 °C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac060266+</identifier><identifier>PMID: 16906706</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography ; Exact sciences and technology ; Gas chromatographic methods ; Gas separation ; Nanotubes ; Temperature effects</subject><ispartof>Analytical chemistry (Washington), 2006-08, Vol.78 (16), p.5639-5644</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 15, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-a5f56e63bf91f7660b861e09d1b130ae00a4871eeb57b8be3e531c89a2185efd3</citedby><cites>FETCH-LOGICAL-a405t-a5f56e63bf91f7660b861e09d1b130ae00a4871eeb57b8be3e531c89a2185efd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac060266+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac060266+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18053897$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16906706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stadermann, Michael</creatorcontrib><creatorcontrib>McBrady, Adam D</creatorcontrib><creatorcontrib>Dick, Brian</creatorcontrib><creatorcontrib>Reid, Vanessa R</creatorcontrib><creatorcontrib>Noy, Aleksandr</creatorcontrib><creatorcontrib>Synovec, Robert E</creatorcontrib><creatorcontrib>Bakajin, Olgica</creatorcontrib><title>Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 μm × 100 μm square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 °C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography</subject><subject>Exact sciences and technology</subject><subject>Gas chromatographic methods</subject><subject>Gas separation</subject><subject>Nanotubes</subject><subject>Temperature effects</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpl0F1rFDEUBuAgit1WL_wDMogVQUZPJpuPvdRBq9DVwm4teBNOZs90p53NrEkG7L83ZVcX9Cpw8vByzsvYMw5vOVT8HTagoFLqzQM24bKCUhlTPWQTABBlpQGO2HGMNwCcA1eP2RFXM1Aa1IR1l30K2GJMxRnGol6HYYNpuA64Xd8Vgy8Wnb_uqbzCvi9qDC6PvqIf0uioWCRM3eAx3BUXa4wUi84X864JQ4sudA0mWuVI9J76-IQ9arGP9HT_nrDLTx-X9efy_NvZl_r9eYlTkKlE2UpFSrh2xlutFDijOMFsxR0XgASAU6M5kZPaGUeCpOCNmWHFjaR2JU7Yq13uNgw_R4rJbrrYUN-jp2GMVhk9lVqYDF_8A2-GMfi8m624NpnBPXq9Q_moGAO1dhu6Tb7YcrD35ds_5Wf6fJ83ug2tDnBfdgane4Cxwb4N6JsuHpwBKcxMZ1fuXBcT_fr7j-HWKi20tMuLhf2xvKrF9_kHO8_-5c5jEw83_Lffb4JwpjE</recordid><startdate>20060815</startdate><enddate>20060815</enddate><creator>Stadermann, Michael</creator><creator>McBrady, Adam D</creator><creator>Dick, Brian</creator><creator>Reid, Vanessa R</creator><creator>Noy, Aleksandr</creator><creator>Synovec, Robert E</creator><creator>Bakajin, Olgica</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060815</creationdate><title>Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels</title><author>Stadermann, Michael ; McBrady, Adam D ; Dick, Brian ; Reid, Vanessa R ; Noy, Aleksandr ; Synovec, Robert E ; Bakajin, Olgica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-a5f56e63bf91f7660b861e09d1b130ae00a4871eeb57b8be3e531c89a2185efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography</topic><topic>Exact sciences and technology</topic><topic>Gas chromatographic methods</topic><topic>Gas separation</topic><topic>Nanotubes</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stadermann, Michael</creatorcontrib><creatorcontrib>McBrady, Adam D</creatorcontrib><creatorcontrib>Dick, Brian</creatorcontrib><creatorcontrib>Reid, Vanessa R</creatorcontrib><creatorcontrib>Noy, Aleksandr</creatorcontrib><creatorcontrib>Synovec, Robert E</creatorcontrib><creatorcontrib>Bakajin, Olgica</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stadermann, Michael</au><au>McBrady, Adam D</au><au>Dick, Brian</au><au>Reid, Vanessa R</au><au>Noy, Aleksandr</au><au>Synovec, Robert E</au><au>Bakajin, Olgica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2006-08-15</date><risdate>2006</risdate><volume>78</volume><issue>16</issue><spage>5639</spage><epage>5644</epage><pages>5639-5644</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 μm × 100 μm square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 °C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16906706</pmid><doi>10.1021/ac060266+</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2006-08, Vol.78 (16), p.5639-5644 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_68745738 |
source | ACS Publications |
subjects | Analytical chemistry Chemistry Chromatographic methods and physical methods associated with chromatography Chromatography Exact sciences and technology Gas chromatographic methods Gas separation Nanotubes Temperature effects |
title | Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Gas%20Chromatography%20on%20Single-Wall%20Carbon%20Nanotube%20Stationary%20Phases%20in%20Microfabricated%20Channels&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Stadermann,%20Michael&rft.date=2006-08-15&rft.volume=78&rft.issue=16&rft.spage=5639&rft.epage=5644&rft.pages=5639-5644&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac060266+&rft_dat=%3Cproquest_cross%3E1149515281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217887408&rft_id=info:pmid/16906706&rfr_iscdi=true |