Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels

The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2006-08, Vol.78 (16), p.5639-5644
Hauptverfasser: Stadermann, Michael, McBrady, Adam D, Dick, Brian, Reid, Vanessa R, Noy, Aleksandr, Synovec, Robert E, Bakajin, Olgica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5644
container_issue 16
container_start_page 5639
container_title Analytical chemistry (Washington)
container_volume 78
creator Stadermann, Michael
McBrady, Adam D
Dick, Brian
Reid, Vanessa R
Noy, Aleksandr
Synovec, Robert E
Bakajin, Olgica
description The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 μm × 100 μm square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 °C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming.
doi_str_mv 10.1021/ac060266+
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68745738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1149515281</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-a5f56e63bf91f7660b861e09d1b130ae00a4871eeb57b8be3e531c89a2185efd3</originalsourceid><addsrcrecordid>eNpl0F1rFDEUBuAgit1WL_wDMogVQUZPJpuPvdRBq9DVwm4teBNOZs90p53NrEkG7L83ZVcX9Cpw8vByzsvYMw5vOVT8HTagoFLqzQM24bKCUhlTPWQTABBlpQGO2HGMNwCcA1eP2RFXM1Aa1IR1l30K2GJMxRnGol6HYYNpuA64Xd8Vgy8Wnb_uqbzCvi9qDC6PvqIf0uioWCRM3eAx3BUXa4wUi84X864JQ4sudA0mWuVI9J76-IQ9arGP9HT_nrDLTx-X9efy_NvZl_r9eYlTkKlE2UpFSrh2xlutFDijOMFsxR0XgASAU6M5kZPaGUeCpOCNmWHFjaR2JU7Yq13uNgw_R4rJbrrYUN-jp2GMVhk9lVqYDF_8A2-GMfi8m624NpnBPXq9Q_moGAO1dhu6Tb7YcrD35ds_5Wf6fJ83ug2tDnBfdgane4Cxwb4N6JsuHpwBKcxMZ1fuXBcT_fr7j-HWKi20tMuLhf2xvKrF9_kHO8_-5c5jEw83_Lffb4JwpjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217887408</pqid></control><display><type>article</type><title>Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels</title><source>ACS Publications</source><creator>Stadermann, Michael ; McBrady, Adam D ; Dick, Brian ; Reid, Vanessa R ; Noy, Aleksandr ; Synovec, Robert E ; Bakajin, Olgica</creator><creatorcontrib>Stadermann, Michael ; McBrady, Adam D ; Dick, Brian ; Reid, Vanessa R ; Noy, Aleksandr ; Synovec, Robert E ; Bakajin, Olgica</creatorcontrib><description>The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 μm × 100 μm square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 °C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac060266+</identifier><identifier>PMID: 16906706</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography ; Exact sciences and technology ; Gas chromatographic methods ; Gas separation ; Nanotubes ; Temperature effects</subject><ispartof>Analytical chemistry (Washington), 2006-08, Vol.78 (16), p.5639-5644</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 15, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-a5f56e63bf91f7660b861e09d1b130ae00a4871eeb57b8be3e531c89a2185efd3</citedby><cites>FETCH-LOGICAL-a405t-a5f56e63bf91f7660b861e09d1b130ae00a4871eeb57b8be3e531c89a2185efd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac060266+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac060266+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18053897$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16906706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stadermann, Michael</creatorcontrib><creatorcontrib>McBrady, Adam D</creatorcontrib><creatorcontrib>Dick, Brian</creatorcontrib><creatorcontrib>Reid, Vanessa R</creatorcontrib><creatorcontrib>Noy, Aleksandr</creatorcontrib><creatorcontrib>Synovec, Robert E</creatorcontrib><creatorcontrib>Bakajin, Olgica</creatorcontrib><title>Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 μm × 100 μm square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 °C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography</subject><subject>Exact sciences and technology</subject><subject>Gas chromatographic methods</subject><subject>Gas separation</subject><subject>Nanotubes</subject><subject>Temperature effects</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpl0F1rFDEUBuAgit1WL_wDMogVQUZPJpuPvdRBq9DVwm4teBNOZs90p53NrEkG7L83ZVcX9Cpw8vByzsvYMw5vOVT8HTagoFLqzQM24bKCUhlTPWQTABBlpQGO2HGMNwCcA1eP2RFXM1Aa1IR1l30K2GJMxRnGol6HYYNpuA64Xd8Vgy8Wnb_uqbzCvi9qDC6PvqIf0uioWCRM3eAx3BUXa4wUi84X864JQ4sudA0mWuVI9J76-IQ9arGP9HT_nrDLTx-X9efy_NvZl_r9eYlTkKlE2UpFSrh2xlutFDijOMFsxR0XgASAU6M5kZPaGUeCpOCNmWHFjaR2JU7Yq13uNgw_R4rJbrrYUN-jp2GMVhk9lVqYDF_8A2-GMfi8m624NpnBPXq9Q_moGAO1dhu6Tb7YcrD35ds_5Wf6fJ83ug2tDnBfdgane4Cxwb4N6JsuHpwBKcxMZ1fuXBcT_fr7j-HWKi20tMuLhf2xvKrF9_kHO8_-5c5jEw83_Lffb4JwpjE</recordid><startdate>20060815</startdate><enddate>20060815</enddate><creator>Stadermann, Michael</creator><creator>McBrady, Adam D</creator><creator>Dick, Brian</creator><creator>Reid, Vanessa R</creator><creator>Noy, Aleksandr</creator><creator>Synovec, Robert E</creator><creator>Bakajin, Olgica</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060815</creationdate><title>Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels</title><author>Stadermann, Michael ; McBrady, Adam D ; Dick, Brian ; Reid, Vanessa R ; Noy, Aleksandr ; Synovec, Robert E ; Bakajin, Olgica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-a5f56e63bf91f7660b861e09d1b130ae00a4871eeb57b8be3e531c89a2185efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography</topic><topic>Exact sciences and technology</topic><topic>Gas chromatographic methods</topic><topic>Gas separation</topic><topic>Nanotubes</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stadermann, Michael</creatorcontrib><creatorcontrib>McBrady, Adam D</creatorcontrib><creatorcontrib>Dick, Brian</creatorcontrib><creatorcontrib>Reid, Vanessa R</creatorcontrib><creatorcontrib>Noy, Aleksandr</creatorcontrib><creatorcontrib>Synovec, Robert E</creatorcontrib><creatorcontrib>Bakajin, Olgica</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stadermann, Michael</au><au>McBrady, Adam D</au><au>Dick, Brian</au><au>Reid, Vanessa R</au><au>Noy, Aleksandr</au><au>Synovec, Robert E</au><au>Bakajin, Olgica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2006-08-15</date><risdate>2006</risdate><volume>78</volume><issue>16</issue><spage>5639</spage><epage>5644</epage><pages>5639-5644</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 μm × 100 μm square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 °C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16906706</pmid><doi>10.1021/ac060266+</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2006-08, Vol.78 (16), p.5639-5644
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_68745738
source ACS Publications
subjects Analytical chemistry
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography
Exact sciences and technology
Gas chromatographic methods
Gas separation
Nanotubes
Temperature effects
title Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Gas%20Chromatography%20on%20Single-Wall%20Carbon%20Nanotube%20Stationary%20Phases%20in%20Microfabricated%20Channels&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Stadermann,%20Michael&rft.date=2006-08-15&rft.volume=78&rft.issue=16&rft.spage=5639&rft.epage=5644&rft.pages=5639-5644&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac060266+&rft_dat=%3Cproquest_cross%3E1149515281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217887408&rft_id=info:pmid/16906706&rfr_iscdi=true