response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer
Twenty-one species of macroalgae (four Chlorophyta, eight Rhodophyta, and nine Phaeophyta) from the Kongsfjord (Norwegian Arctic) were examined for their response to nutrient enrichment (nitrate and phosphate) in the summer period. The enzymatic activities related to nutrient assimilation, external...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2006-08, Vol.57 (11), p.2661-2671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2671 |
---|---|
container_issue | 11 |
container_start_page | 2661 |
container_title | Journal of experimental botany |
container_volume | 57 |
creator | Gordillo, Francisco J.L Aguilera, José Jiménez, Carlos |
description | Twenty-one species of macroalgae (four Chlorophyta, eight Rhodophyta, and nine Phaeophyta) from the Kongsfjord (Norwegian Arctic) were examined for their response to nutrient enrichment (nitrate and phosphate) in the summer period. The enzymatic activities related to nutrient assimilation, external carbonic anhydrase (CAext, EC 4.2.1.1), nitrate reductase (NR, EC 1.6.6.1), and alkaline phosphatase (AP, EC 3.1.3.1), as well as the biochemical composition (total C and N, soluble carbohydrates, soluble proteins, and pigments) were measured. CAext activity was present in all species, and showed a general decrease after nutrient enrichment. Inversely, NR activity increased in most of the species examined. Changes in pigment ratios pointed to the implication of light harvesting system in the acclimation strategy. Despite enzymatic and pigmentary response, the Arctic seaweeds can be regarded as not being N-limited even in summer, as shown by the slight effect of nutrient enrichment on biochemical composition. The exception being the nitrophilic species Monostroma arcticum and, to a lesser extent, Acrosiphonia sp. For the rest of the species studied, changes in total internal C and N, soluble proteins, soluble carbohydrates, pigment content, and the internal pool of inorganic N were recorded only for particular species and no general pattern was shown. Acclimation to unexpected nutrient input seemed to ensure the maintenance of a stable biomass composition, rather than an optimized use of the newly available resource (except for the nitrophilic species). This indicates a high degree of resilience of the algal community to a disruption in the natural nutrient availability pattern. |
doi_str_mv | 10.1093/jxb/erl029 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68743689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24036254</jstor_id><sourcerecordid>24036254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-5c767bb8ee55ef557658bef685a911b51265183477daadb9f502fdbb37b5b2bb3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEokNhwx6IkMoCKdSv68eyGgFFKkIICoiNZScOeEjsqZ2I8u_rIaOOxIbNvYvz3XNkn6p6jNErjBQ93VzbU5cGRNSdaoUZRw1hFN-tVggR0iAF4qh6kPMGIQQI4H51hLkkCphYVSG5vI0huzr2dZin5F2YapOzH_1gJh9DbUJXWx_bn270rRnqNo7bmP1frRydpXbybZ2d-e1cl-sp1ubg5MN23s06z-Po0sPqXm-G7B7t93F1-eb15_V5c_Hh7bv12UXTMkWnBlrBhbXSOQDXAwgO0rqeSzAKYwuYcMCSMiE6YzqrekCk76ylwoIlZR9XLxbfbYpXs8uTHn1u3TCY4OKcNZeCUS7Vf0GsKKEM8QI-_wfcxDmF8ghNKCCkhCQFerlAbYo5J9frbfKjSX80RnrXlS5d6aWrAj_dO852dN0B3ZdTgJM9YHL5-D6Z0Pp84GRxlHiX-mThNnmK6VYnDFFOgBW9WXSfJ3d9q5v0S3NBBejzb9_1-69y_YUKrD8W_tnC9yZq8yOVzMtPBGGKSiAAZvQGBfbAYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235009782</pqid></control><display><type>article</type><title>response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Gordillo, Francisco J.L ; Aguilera, José ; Jiménez, Carlos</creator><creatorcontrib>Gordillo, Francisco J.L ; Aguilera, José ; Jiménez, Carlos</creatorcontrib><description>Twenty-one species of macroalgae (four Chlorophyta, eight Rhodophyta, and nine Phaeophyta) from the Kongsfjord (Norwegian Arctic) were examined for their response to nutrient enrichment (nitrate and phosphate) in the summer period. The enzymatic activities related to nutrient assimilation, external carbonic anhydrase (CAext, EC 4.2.1.1), nitrate reductase (NR, EC 1.6.6.1), and alkaline phosphatase (AP, EC 3.1.3.1), as well as the biochemical composition (total C and N, soluble carbohydrates, soluble proteins, and pigments) were measured. CAext activity was present in all species, and showed a general decrease after nutrient enrichment. Inversely, NR activity increased in most of the species examined. Changes in pigment ratios pointed to the implication of light harvesting system in the acclimation strategy. Despite enzymatic and pigmentary response, the Arctic seaweeds can be regarded as not being N-limited even in summer, as shown by the slight effect of nutrient enrichment on biochemical composition. The exception being the nitrophilic species Monostroma arcticum and, to a lesser extent, Acrosiphonia sp. For the rest of the species studied, changes in total internal C and N, soluble proteins, soluble carbohydrates, pigment content, and the internal pool of inorganic N were recorded only for particular species and no general pattern was shown. Acclimation to unexpected nutrient input seemed to ensure the maintenance of a stable biomass composition, rather than an optimized use of the newly available resource (except for the nitrophilic species). This indicates a high degree of resilience of the algal community to a disruption in the natural nutrient availability pattern.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erl029</identifier><identifier>PMID: 16829547</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>acclimation ; Acclimatization ; Acrosiphonia ; alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Animal, plant and microbial ecology ; Applied ecology ; Arctic Regions ; Atlantic Ocean ; Biological and medical sciences ; Brown algae ; carbohydrate content ; Carbon ; Carbon - metabolism ; carbonate dehydratase ; carbonic anhydrase ; Carbonic Anhydrases - metabolism ; chemical constituents of plants ; Chlorophycota ; chlorophyll ; Chlorophyll - metabolism ; Chlorophylls ; Chlorophyta ; Chlorophyta - metabolism ; Ecotoxicology, biological effects of pollution ; Effects of pollution and side effects of pesticides on plants and fungi ; enzyme activity ; Eukaryota - metabolism ; eutrophication ; Fundamental and applied biological sciences. Psychology ; Green algae ; Macroalgae ; Monostroma arcticum ; nitrate reductase ; Nitrate Reductase - metabolism ; Nitrates ; Nitrates - metabolism ; Nitrogen ; Nitrogen - metabolism ; nutrient availability ; nutrient uptake ; Phaeophyceae - metabolism ; Phaeophycophyta ; Phaeophyta ; phosphates ; Phosphates - metabolism ; Pigments ; plant pigments ; protein content ; Red algae ; Research Papers ; Rhodophycota ; Rhodophyta ; Rhodophyta - metabolism ; seasonal variation ; Seasons ; Seaweeds ; summer</subject><ispartof>Journal of experimental botany, 2006-08, Vol.57 (11), p.2661-2671</ispartof><rights>Society for Experimental Biology 2006</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Aug 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-5c767bb8ee55ef557658bef685a911b51265183477daadb9f502fdbb37b5b2bb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24036254$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24036254$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18109812$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16829547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gordillo, Francisco J.L</creatorcontrib><creatorcontrib>Aguilera, José</creatorcontrib><creatorcontrib>Jiménez, Carlos</creatorcontrib><title>response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Twenty-one species of macroalgae (four Chlorophyta, eight Rhodophyta, and nine Phaeophyta) from the Kongsfjord (Norwegian Arctic) were examined for their response to nutrient enrichment (nitrate and phosphate) in the summer period. The enzymatic activities related to nutrient assimilation, external carbonic anhydrase (CAext, EC 4.2.1.1), nitrate reductase (NR, EC 1.6.6.1), and alkaline phosphatase (AP, EC 3.1.3.1), as well as the biochemical composition (total C and N, soluble carbohydrates, soluble proteins, and pigments) were measured. CAext activity was present in all species, and showed a general decrease after nutrient enrichment. Inversely, NR activity increased in most of the species examined. Changes in pigment ratios pointed to the implication of light harvesting system in the acclimation strategy. Despite enzymatic and pigmentary response, the Arctic seaweeds can be regarded as not being N-limited even in summer, as shown by the slight effect of nutrient enrichment on biochemical composition. The exception being the nitrophilic species Monostroma arcticum and, to a lesser extent, Acrosiphonia sp. For the rest of the species studied, changes in total internal C and N, soluble proteins, soluble carbohydrates, pigment content, and the internal pool of inorganic N were recorded only for particular species and no general pattern was shown. Acclimation to unexpected nutrient input seemed to ensure the maintenance of a stable biomass composition, rather than an optimized use of the newly available resource (except for the nitrophilic species). This indicates a high degree of resilience of the algal community to a disruption in the natural nutrient availability pattern.</description><subject>acclimation</subject><subject>Acclimatization</subject><subject>Acrosiphonia</subject><subject>alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Arctic Regions</subject><subject>Atlantic Ocean</subject><subject>Biological and medical sciences</subject><subject>Brown algae</subject><subject>carbohydrate content</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>carbonate dehydratase</subject><subject>carbonic anhydrase</subject><subject>Carbonic Anhydrases - metabolism</subject><subject>chemical constituents of plants</subject><subject>Chlorophycota</subject><subject>chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chlorophylls</subject><subject>Chlorophyta</subject><subject>Chlorophyta - metabolism</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Effects of pollution and side effects of pesticides on plants and fungi</subject><subject>enzyme activity</subject><subject>Eukaryota - metabolism</subject><subject>eutrophication</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Green algae</subject><subject>Macroalgae</subject><subject>Monostroma arcticum</subject><subject>nitrate reductase</subject><subject>Nitrate Reductase - metabolism</subject><subject>Nitrates</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>nutrient availability</subject><subject>nutrient uptake</subject><subject>Phaeophyceae - metabolism</subject><subject>Phaeophycophyta</subject><subject>Phaeophyta</subject><subject>phosphates</subject><subject>Phosphates - metabolism</subject><subject>Pigments</subject><subject>plant pigments</subject><subject>protein content</subject><subject>Red algae</subject><subject>Research Papers</subject><subject>Rhodophycota</subject><subject>Rhodophyta</subject><subject>Rhodophyta - metabolism</subject><subject>seasonal variation</subject><subject>Seasons</subject><subject>Seaweeds</subject><subject>summer</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSMEokNhwx6IkMoCKdSv68eyGgFFKkIICoiNZScOeEjsqZ2I8u_rIaOOxIbNvYvz3XNkn6p6jNErjBQ93VzbU5cGRNSdaoUZRw1hFN-tVggR0iAF4qh6kPMGIQQI4H51hLkkCphYVSG5vI0huzr2dZin5F2YapOzH_1gJh9DbUJXWx_bn270rRnqNo7bmP1frRydpXbybZ2d-e1cl-sp1ubg5MN23s06z-Po0sPqXm-G7B7t93F1-eb15_V5c_Hh7bv12UXTMkWnBlrBhbXSOQDXAwgO0rqeSzAKYwuYcMCSMiE6YzqrekCk76ylwoIlZR9XLxbfbYpXs8uTHn1u3TCY4OKcNZeCUS7Vf0GsKKEM8QI-_wfcxDmF8ghNKCCkhCQFerlAbYo5J9frbfKjSX80RnrXlS5d6aWrAj_dO852dN0B3ZdTgJM9YHL5-D6Z0Pp84GRxlHiX-mThNnmK6VYnDFFOgBW9WXSfJ3d9q5v0S3NBBejzb9_1-69y_YUKrD8W_tnC9yZq8yOVzMtPBGGKSiAAZvQGBfbAYQ</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Gordillo, Francisco J.L</creator><creator>Aguilera, José</creator><creator>Jiménez, Carlos</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer</title><author>Gordillo, Francisco J.L ; Aguilera, José ; Jiménez, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-5c767bb8ee55ef557658bef685a911b51265183477daadb9f502fdbb37b5b2bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>acclimation</topic><topic>Acclimatization</topic><topic>Acrosiphonia</topic><topic>alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Arctic Regions</topic><topic>Atlantic Ocean</topic><topic>Biological and medical sciences</topic><topic>Brown algae</topic><topic>carbohydrate content</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>carbonate dehydratase</topic><topic>carbonic anhydrase</topic><topic>Carbonic Anhydrases - metabolism</topic><topic>chemical constituents of plants</topic><topic>Chlorophycota</topic><topic>chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chlorophylls</topic><topic>Chlorophyta</topic><topic>Chlorophyta - metabolism</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Effects of pollution and side effects of pesticides on plants and fungi</topic><topic>enzyme activity</topic><topic>Eukaryota - metabolism</topic><topic>eutrophication</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Green algae</topic><topic>Macroalgae</topic><topic>Monostroma arcticum</topic><topic>nitrate reductase</topic><topic>Nitrate Reductase - metabolism</topic><topic>Nitrates</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>nutrient availability</topic><topic>nutrient uptake</topic><topic>Phaeophyceae - metabolism</topic><topic>Phaeophycophyta</topic><topic>Phaeophyta</topic><topic>phosphates</topic><topic>Phosphates - metabolism</topic><topic>Pigments</topic><topic>plant pigments</topic><topic>protein content</topic><topic>Red algae</topic><topic>Research Papers</topic><topic>Rhodophycota</topic><topic>Rhodophyta</topic><topic>Rhodophyta - metabolism</topic><topic>seasonal variation</topic><topic>Seasons</topic><topic>Seaweeds</topic><topic>summer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordillo, Francisco J.L</creatorcontrib><creatorcontrib>Aguilera, José</creatorcontrib><creatorcontrib>Jiménez, Carlos</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordillo, Francisco J.L</au><au>Aguilera, José</au><au>Jiménez, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>57</volume><issue>11</issue><spage>2661</spage><epage>2671</epage><pages>2661-2671</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>Twenty-one species of macroalgae (four Chlorophyta, eight Rhodophyta, and nine Phaeophyta) from the Kongsfjord (Norwegian Arctic) were examined for their response to nutrient enrichment (nitrate and phosphate) in the summer period. The enzymatic activities related to nutrient assimilation, external carbonic anhydrase (CAext, EC 4.2.1.1), nitrate reductase (NR, EC 1.6.6.1), and alkaline phosphatase (AP, EC 3.1.3.1), as well as the biochemical composition (total C and N, soluble carbohydrates, soluble proteins, and pigments) were measured. CAext activity was present in all species, and showed a general decrease after nutrient enrichment. Inversely, NR activity increased in most of the species examined. Changes in pigment ratios pointed to the implication of light harvesting system in the acclimation strategy. Despite enzymatic and pigmentary response, the Arctic seaweeds can be regarded as not being N-limited even in summer, as shown by the slight effect of nutrient enrichment on biochemical composition. The exception being the nitrophilic species Monostroma arcticum and, to a lesser extent, Acrosiphonia sp. For the rest of the species studied, changes in total internal C and N, soluble proteins, soluble carbohydrates, pigment content, and the internal pool of inorganic N were recorded only for particular species and no general pattern was shown. Acclimation to unexpected nutrient input seemed to ensure the maintenance of a stable biomass composition, rather than an optimized use of the newly available resource (except for the nitrophilic species). This indicates a high degree of resilience of the algal community to a disruption in the natural nutrient availability pattern.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16829547</pmid><doi>10.1093/jxb/erl029</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2006-08, Vol.57 (11), p.2661-2671 |
issn | 0022-0957 1460-2431 |
language | eng |
recordid | cdi_proquest_miscellaneous_68743689 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | acclimation Acclimatization Acrosiphonia alkaline phosphatase Alkaline Phosphatase - metabolism Animal, plant and microbial ecology Applied ecology Arctic Regions Atlantic Ocean Biological and medical sciences Brown algae carbohydrate content Carbon Carbon - metabolism carbonate dehydratase carbonic anhydrase Carbonic Anhydrases - metabolism chemical constituents of plants Chlorophycota chlorophyll Chlorophyll - metabolism Chlorophylls Chlorophyta Chlorophyta - metabolism Ecotoxicology, biological effects of pollution Effects of pollution and side effects of pesticides on plants and fungi enzyme activity Eukaryota - metabolism eutrophication Fundamental and applied biological sciences. Psychology Green algae Macroalgae Monostroma arcticum nitrate reductase Nitrate Reductase - metabolism Nitrates Nitrates - metabolism Nitrogen Nitrogen - metabolism nutrient availability nutrient uptake Phaeophyceae - metabolism Phaeophycophyta Phaeophyta phosphates Phosphates - metabolism Pigments plant pigments protein content Red algae Research Papers Rhodophycota Rhodophyta Rhodophyta - metabolism seasonal variation Seasons Seaweeds summer |
title | response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=response%20of%20nutrient%20assimilation%20and%20biochemical%20composition%20of%20Arctic%20seaweeds%20to%20a%20nutrient%20input%20in%20summer&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Gordillo,%20Francisco%20J.L&rft.date=2006-08-01&rft.volume=57&rft.issue=11&rft.spage=2661&rft.epage=2671&rft.pages=2661-2671&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jxb/erl029&rft_dat=%3Cjstor_proqu%3E24036254%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=235009782&rft_id=info:pmid/16829547&rft_jstor_id=24036254&rfr_iscdi=true |