Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications
The formation of O/W nano-emulsions suitable for pharmaceutical application and the solubilisation of a practically non-water-soluble drug, lidocaine, have been studied in water/non-ionic surfactant/oil systems. Nano-emulsions were prepared by using low-energy emulsification methods, changing the co...
Gespeichert in:
Veröffentlicht in: | European journal of pharmaceutical sciences 2005-12, Vol.26 (5), p.438-445 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The formation of O/W nano-emulsions suitable for pharmaceutical application and the solubilisation of a practically non-water-soluble drug, lidocaine, have been studied in water/non-ionic surfactant/oil systems. Nano-emulsions were prepared by using low-energy emulsification methods, changing the composition at constant temperature. Kinetic stability was assessed by measuring droplet diameter as a function of time. Lidocaine solubilisation was studied in nano-emulsions with high water content. In the water/Cremophor EL/Miglyol 812 system the lowest droplet sizes, from 14 to 39
nm at 10/90 and 40/60 oil/surfactant ratios, respectively, and 90% of water content, were obtained with an emulsification method consisting of stepwise addition of water to oil/surfactant mixtures at 70
°C. Nano-emulsions of this system showed high kinetic stability. Droplet diameters did not exceed 67
nm after a period of at least 7 months. The maximum lidocaine concentration solubilised in nano-emulsions of the water/Cremophor EL/Miglyol 812 system with 90 and 95% of water content was 3.5 and 2.1%, respectively. These values are within the therapeutic range of lidocaine. |
---|---|
ISSN: | 0928-0987 1879-0720 |
DOI: | 10.1016/j.ejps.2005.08.001 |