Learning protein secondary structure from sequential and relational data

We propose a method for sequential supervised learning that exploits explicit knowledge of short- and long-range dependencies. The architecture consists of a recursive and bi-directional neural network that takes as input a sequence along with an associated interaction graph. The interaction graph m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2005-10, Vol.18 (8), p.1029-1039
Hauptverfasser: Ceroni, Alessio, Frasconi, Paolo, Pollastri, Gianluca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!