Microbial Colonization of Beech and Spruce Litter--Influence of Decomposition Site and Plant Litter Species on the Diversity of Microbial Community
The present study was conducted to investigate the effect of decomposition site and plant litter species on the colonizing microbial communities. For this, litter bag technique using beech and spruce litter was combined with RNA-based fingerprinting and cloning. Litter bags were incubated for 2 and...
Gespeichert in:
Veröffentlicht in: | Microbial ecology 2006-07, Vol.52 (1), p.127-135 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study was conducted to investigate the effect of decomposition site and plant litter species on the colonizing microbial communities. For this, litter bag technique using beech and spruce litter was combined with RNA-based fingerprinting and cloning. Litter bags were incubated for 2 and 8 weeks in the Ah horizon of beech and beech-spruce mixed forest sites. Although sugars and starch were rapidly lost, lignin content increased by more than 40% for beech and more than doubled for spruce litter at both soil sites at the end of the experiment. Denaturing gradient gel electrophoresis analysis of 16S and 18S rRNA RT-PCR products was used for screening of differences between bacterial and fungal communities colonizing the two litter types. Development of the microbial community over time was observed to be specific for each litter type and decomposition site. RT-PCR products from both litter types incubated in beech-spruce mixed forest site were also cloned to identify the bacterial and fungal colonizers. The 16S rRNA clone libraries of beech litter were dominated by γ-proteobacterial members, whereas spruce libraries were mainly composed of α-, β-, and γ-proteobacterial members. Ascomycota members dominated the 18S rRNA clone libraries. Clones similar to Zygomycota were absent from spruce, whereas those similar to Basidiomycota and Glomeromycota were absent from beech libraries. Selective effects of litter quality were observed after 8 weeks. The study provides an insight into the bacterial and fungal communities colonizing beech and spruce litter, and the importance of litter quality and decomposition site as key factors in their development and succession. |
---|---|
ISSN: | 0095-3628 1432-184X |
DOI: | 10.1007/s00248-006-9006-3 |