A Posttranscriptional Role for the Yeast Paf1-RNA Polymerase II Complex Is Revealed by Identification of Primary Targets

The yeast Paf1 complex (Paf1C: Paf1, Cdc73, Ctr9, Rtf1, and Leo1) is associated with RNA Polymerase II (Pol II) at promoters and coding regions of transcriptionally active genes, but transcript abundance for only a small subset of genes is altered by loss of Paf1. By using conditional and null allel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2005-10, Vol.20 (2), p.213-223
Hauptverfasser: Penheiter, Kristi L., Washburn, Taylor M., Porter, Stephanie E., Hoffman, Matthew G., Jaehning, Judith A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 2
container_start_page 213
container_title Molecular cell
container_volume 20
creator Penheiter, Kristi L.
Washburn, Taylor M.
Porter, Stephanie E.
Hoffman, Matthew G.
Jaehning, Judith A.
description The yeast Paf1 complex (Paf1C: Paf1, Cdc73, Ctr9, Rtf1, and Leo1) is associated with RNA Polymerase II (Pol II) at promoters and coding regions of transcriptionally active genes, but transcript abundance for only a small subset of genes is altered by loss of Paf1. By using conditional and null alleles of PAF1 and microarrays, we determined the identity of both primary and secondary targets of the Paf1C. Neither primary nor secondary Paf1C target promoters were responsive to loss of Paf1. Instead, Paf1 loss altered poly(A) site utilization of primary target genes SDA1 and MAK21, resulting in increased abundance of 3′-extended mRNAs. The 3′-extended MAK21 RNA is sensitive to nonsense-mediated decay (NMD), as revealed by its increased abundance in the absence of Upf1. Therefore, although the Paf1C is associated with Pol II at initiation and during elongation, these critical Paf1-dependent changes in transcript abundance are due to alterations in posttranscriptional processing.
doi_str_mv 10.1016/j.molcel.2005.08.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68721425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276505015650</els_id><sourcerecordid>68721425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-668801394bc577f7ae1bed250e4a1581beaa848ebe3e48e44f5931156c967c5e3</originalsourceid><addsrcrecordid>eNp9kE2L2zAQhkVp6X60_6AUnXqzK8n68qWwhH4YljaE7aEnIcvjVkG2UklZNv--Dg70tqfRwDPvjB6E3lFSU0Llx309xeAg1IwQURNdE9a8QNeUtKriVPKXlzdTUlyhm5z3hFAudPsaXVHJuFSMX6OnO7yNuZRk5-ySPxQfZxvwLgbAY0y4_AH8C2wueGtHWu2-n_lwmiDZDLjr8CZOhwBPuMt4B49gAwy4P-FugLn40Tt7TsRxxNvkJ5tO-MGm31DyG_RqtCHD20u9RT-_fH7YfKvuf3ztNnf3leOKlUpKrQltWt47odSoLNAeBiYIcEuFXhprNdfQQwNL4XwUbUOpkK6VyglobtGHNfeQ4t8j5GImnxdtwc4Qj9lIrRjlTCwgX0GXYs4JRnNYLzaUmLNxszercXM2bog2i_Fl7P0l_9hPMPwfuihegE8rAMsvHz0kk52H2cHgE7hihuif3_AP04OUHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68721425</pqid></control><display><type>article</type><title>A Posttranscriptional Role for the Yeast Paf1-RNA Polymerase II Complex Is Revealed by Identification of Primary Targets</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Penheiter, Kristi L. ; Washburn, Taylor M. ; Porter, Stephanie E. ; Hoffman, Matthew G. ; Jaehning, Judith A.</creator><creatorcontrib>Penheiter, Kristi L. ; Washburn, Taylor M. ; Porter, Stephanie E. ; Hoffman, Matthew G. ; Jaehning, Judith A.</creatorcontrib><description>The yeast Paf1 complex (Paf1C: Paf1, Cdc73, Ctr9, Rtf1, and Leo1) is associated with RNA Polymerase II (Pol II) at promoters and coding regions of transcriptionally active genes, but transcript abundance for only a small subset of genes is altered by loss of Paf1. By using conditional and null alleles of PAF1 and microarrays, we determined the identity of both primary and secondary targets of the Paf1C. Neither primary nor secondary Paf1C target promoters were responsive to loss of Paf1. Instead, Paf1 loss altered poly(A) site utilization of primary target genes SDA1 and MAK21, resulting in increased abundance of 3′-extended mRNAs. The 3′-extended MAK21 RNA is sensitive to nonsense-mediated decay (NMD), as revealed by its increased abundance in the absence of Upf1. Therefore, although the Paf1C is associated with Pol II at initiation and during elongation, these critical Paf1-dependent changes in transcript abundance are due to alterations in posttranscriptional processing.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2005.08.023</identifier><identifier>PMID: 16246724</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation ; Macromolecular Substances - metabolism ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; RNA Polymerase II - metabolism ; RNA Processing, Post-Transcriptional - physiology ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription, Genetic</subject><ispartof>Molecular cell, 2005-10, Vol.20 (2), p.213-223</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-668801394bc577f7ae1bed250e4a1581beaa848ebe3e48e44f5931156c967c5e3</citedby><cites>FETCH-LOGICAL-c472t-668801394bc577f7ae1bed250e4a1581beaa848ebe3e48e44f5931156c967c5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2005.08.023$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16246724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Penheiter, Kristi L.</creatorcontrib><creatorcontrib>Washburn, Taylor M.</creatorcontrib><creatorcontrib>Porter, Stephanie E.</creatorcontrib><creatorcontrib>Hoffman, Matthew G.</creatorcontrib><creatorcontrib>Jaehning, Judith A.</creatorcontrib><title>A Posttranscriptional Role for the Yeast Paf1-RNA Polymerase II Complex Is Revealed by Identification of Primary Targets</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The yeast Paf1 complex (Paf1C: Paf1, Cdc73, Ctr9, Rtf1, and Leo1) is associated with RNA Polymerase II (Pol II) at promoters and coding regions of transcriptionally active genes, but transcript abundance for only a small subset of genes is altered by loss of Paf1. By using conditional and null alleles of PAF1 and microarrays, we determined the identity of both primary and secondary targets of the Paf1C. Neither primary nor secondary Paf1C target promoters were responsive to loss of Paf1. Instead, Paf1 loss altered poly(A) site utilization of primary target genes SDA1 and MAK21, resulting in increased abundance of 3′-extended mRNAs. The 3′-extended MAK21 RNA is sensitive to nonsense-mediated decay (NMD), as revealed by its increased abundance in the absence of Upf1. Therefore, although the Paf1C is associated with Pol II at initiation and during elongation, these critical Paf1-dependent changes in transcript abundance are due to alterations in posttranscriptional processing.</description><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Macromolecular Substances - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription, Genetic</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE2L2zAQhkVp6X60_6AUnXqzK8n68qWwhH4YljaE7aEnIcvjVkG2UklZNv--Dg70tqfRwDPvjB6E3lFSU0Llx309xeAg1IwQURNdE9a8QNeUtKriVPKXlzdTUlyhm5z3hFAudPsaXVHJuFSMX6OnO7yNuZRk5-ySPxQfZxvwLgbAY0y4_AH8C2wueGtHWu2-n_lwmiDZDLjr8CZOhwBPuMt4B49gAwy4P-FugLn40Tt7TsRxxNvkJ5tO-MGm31DyG_RqtCHD20u9RT-_fH7YfKvuf3ztNnf3leOKlUpKrQltWt47odSoLNAeBiYIcEuFXhprNdfQQwNL4XwUbUOpkK6VyglobtGHNfeQ4t8j5GImnxdtwc4Qj9lIrRjlTCwgX0GXYs4JRnNYLzaUmLNxszercXM2bog2i_Fl7P0l_9hPMPwfuihegE8rAMsvHz0kk52H2cHgE7hihuif3_AP04OUHw</recordid><startdate>20051028</startdate><enddate>20051028</enddate><creator>Penheiter, Kristi L.</creator><creator>Washburn, Taylor M.</creator><creator>Porter, Stephanie E.</creator><creator>Hoffman, Matthew G.</creator><creator>Jaehning, Judith A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051028</creationdate><title>A Posttranscriptional Role for the Yeast Paf1-RNA Polymerase II Complex Is Revealed by Identification of Primary Targets</title><author>Penheiter, Kristi L. ; Washburn, Taylor M. ; Porter, Stephanie E. ; Hoffman, Matthew G. ; Jaehning, Judith A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-668801394bc577f7ae1bed250e4a1581beaa848ebe3e48e44f5931156c967c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Macromolecular Substances - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penheiter, Kristi L.</creatorcontrib><creatorcontrib>Washburn, Taylor M.</creatorcontrib><creatorcontrib>Porter, Stephanie E.</creatorcontrib><creatorcontrib>Hoffman, Matthew G.</creatorcontrib><creatorcontrib>Jaehning, Judith A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penheiter, Kristi L.</au><au>Washburn, Taylor M.</au><au>Porter, Stephanie E.</au><au>Hoffman, Matthew G.</au><au>Jaehning, Judith A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Posttranscriptional Role for the Yeast Paf1-RNA Polymerase II Complex Is Revealed by Identification of Primary Targets</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2005-10-28</date><risdate>2005</risdate><volume>20</volume><issue>2</issue><spage>213</spage><epage>223</epage><pages>213-223</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The yeast Paf1 complex (Paf1C: Paf1, Cdc73, Ctr9, Rtf1, and Leo1) is associated with RNA Polymerase II (Pol II) at promoters and coding regions of transcriptionally active genes, but transcript abundance for only a small subset of genes is altered by loss of Paf1. By using conditional and null alleles of PAF1 and microarrays, we determined the identity of both primary and secondary targets of the Paf1C. Neither primary nor secondary Paf1C target promoters were responsive to loss of Paf1. Instead, Paf1 loss altered poly(A) site utilization of primary target genes SDA1 and MAK21, resulting in increased abundance of 3′-extended mRNAs. The 3′-extended MAK21 RNA is sensitive to nonsense-mediated decay (NMD), as revealed by its increased abundance in the absence of Upf1. Therefore, although the Paf1C is associated with Pol II at initiation and during elongation, these critical Paf1-dependent changes in transcript abundance are due to alterations in posttranscriptional processing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16246724</pmid><doi>10.1016/j.molcel.2005.08.023</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2005-10, Vol.20 (2), p.213-223
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_68721425
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Gene Expression Regulation
Macromolecular Substances - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
RNA Polymerase II - metabolism
RNA Processing, Post-Transcriptional - physiology
RNA, Messenger - genetics
RNA, Messenger - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcription, Genetic
title A Posttranscriptional Role for the Yeast Paf1-RNA Polymerase II Complex Is Revealed by Identification of Primary Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Posttranscriptional%20Role%20for%20the%20Yeast%20Paf1-RNA%20Polymerase%20II%20Complex%20Is%20Revealed%20by%20Identification%20of%20Primary%20Targets&rft.jtitle=Molecular%20cell&rft.au=Penheiter,%20Kristi%20L.&rft.date=2005-10-28&rft.volume=20&rft.issue=2&rft.spage=213&rft.epage=223&rft.pages=213-223&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2005.08.023&rft_dat=%3Cproquest_cross%3E68721425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68721425&rft_id=info:pmid/16246724&rft_els_id=S1097276505015650&rfr_iscdi=true