Reversal of multidrug resistance by two nordihydroguaiaretic acid derivatives, M4N and maltose-M3N, and their use in combination with doxorubicin or paclitaxel
Multidrug resistance (MDR) continues to be a major obstacle for successful anticancer therapy. One of the principal factors implicated in MDR is the over expression of P-glycoprotein (Pgp), the product of the MDR1 gene. Here we explore the possibility of using the transcription inhibitor tetra-O-met...
Gespeichert in:
Veröffentlicht in: | Cancer chemotherapy and pharmacology 2006-11, Vol.58 (5), p.640-653 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 653 |
---|---|
container_issue | 5 |
container_start_page | 640 |
container_title | Cancer chemotherapy and pharmacology |
container_volume | 58 |
creator | CHANG, Chih-Chuan LIANG, Yu-Chuan KLUTZ, Athena HSU, Chuan-I LIN, Chien-Fu MOLD, David E CHOU, Ting-Chao YUAN CHUAN LEE HUANG, Ru Chih C |
description | Multidrug resistance (MDR) continues to be a major obstacle for successful anticancer therapy. One of the principal factors implicated in MDR is the over expression of P-glycoprotein (Pgp), the product of the MDR1 gene.
Here we explore the possibility of using the transcription inhibitor tetra-O-methyl nordihydroguaiaretic acid (M4N) to inhibit Sp1-regulated MDR1 gene expression and restore doxorubicin and paclitaxel sensitivity to multidrug resistant human cancer cells in vitro and in vivo.
We found that M4N acted synergistically with doxorubicin and paclitaxel in inhibiting the growth of the cells in culture allowing significant dose reductions of both drugs. We observed no such synergism when M4N was used in combination with cisplatin, another chemotherapeutic agent, but not a Pgp substrate, as analyzed by the combination index and isobologram methods. Analysis of MDR1 mRNA and Pgp levels revealed that at sublethal doses, M4N inhibited MDR1 gene expression in the multidrug resistant NCI/ADR-RES cells and reversed the MDR phenotype as measured by Rhodamine-123 retention. In addition, M4N was found to inhibit doxorubicin-induced MDR1 gene expression in drug sensitive MCF-7 breast cancer cells.
M4N and maltose-tri-O-methyl nordihydroguaiaretic acid (maltose-M3N), a water-soluble derivative of NDGA, were also able to reverse the MDR phenotype of the tumor cells in a xenograft model system and combination therapy with M4N or maltose-M3N and paclitaxel was effective at inhibiting growth of these tumors in nude mice. |
doi_str_mv | 10.1007/s00280-006-0214-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68719479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68719479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-43a59b2be4bae5c040842ccecdf5c5d6a438202699d9b8a7255d271df276c7883</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4Mo9lr9A3yRIOhTVye_drOPpWgV2gqizyGbzPZSdjdnkr32_hr_Vfe8g4JPAzOf-TLMh5A3DD4ygOZTBuAaKoC6As5k1T4jKyYFr0BL8ZysQEhZqQbkCTnN-R4AJBPiJTlhtZKSSbUif37gFlO2A409HeehBJ_mO5owh1zs5JB2O1oeIp1i8mG98ynezTbYhCU4al3w1GMKW1vCFvM5vZG31E6ejnYoMWN1I27P_zXKGkOic0YaJuri2IVp2YkTfQhlTX18jGnugluGMdGNdUMo9hGHV-RFb4eMr4_1jPz68vnn5dfq-vvVt8uL68oJVZdKCqvajncoO4vKgVw-wJ1D53vllK-tFJoDr9vWt522DVfK84b5nje1a7QWZ-TDIXeT4u8ZczFjyA6HwU4Y52xq3bBWNu0CvvsPvI9zmpbbDGdCMt3KeoHYAXIp5pywN5sURpt2hoHZqzMHdWZRZ_bqzD747TF47kb0TxtHVwvw_gjY7OzQp0VPyE-cBsFqCeIvyj-jXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213418946</pqid></control><display><type>article</type><title>Reversal of multidrug resistance by two nordihydroguaiaretic acid derivatives, M4N and maltose-M3N, and their use in combination with doxorubicin or paclitaxel</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>CHANG, Chih-Chuan ; LIANG, Yu-Chuan ; KLUTZ, Athena ; HSU, Chuan-I ; LIN, Chien-Fu ; MOLD, David E ; CHOU, Ting-Chao ; YUAN CHUAN LEE ; HUANG, Ru Chih C</creator><creatorcontrib>CHANG, Chih-Chuan ; LIANG, Yu-Chuan ; KLUTZ, Athena ; HSU, Chuan-I ; LIN, Chien-Fu ; MOLD, David E ; CHOU, Ting-Chao ; YUAN CHUAN LEE ; HUANG, Ru Chih C</creatorcontrib><description>Multidrug resistance (MDR) continues to be a major obstacle for successful anticancer therapy. One of the principal factors implicated in MDR is the over expression of P-glycoprotein (Pgp), the product of the MDR1 gene.
Here we explore the possibility of using the transcription inhibitor tetra-O-methyl nordihydroguaiaretic acid (M4N) to inhibit Sp1-regulated MDR1 gene expression and restore doxorubicin and paclitaxel sensitivity to multidrug resistant human cancer cells in vitro and in vivo.
We found that M4N acted synergistically with doxorubicin and paclitaxel in inhibiting the growth of the cells in culture allowing significant dose reductions of both drugs. We observed no such synergism when M4N was used in combination with cisplatin, another chemotherapeutic agent, but not a Pgp substrate, as analyzed by the combination index and isobologram methods. Analysis of MDR1 mRNA and Pgp levels revealed that at sublethal doses, M4N inhibited MDR1 gene expression in the multidrug resistant NCI/ADR-RES cells and reversed the MDR phenotype as measured by Rhodamine-123 retention. In addition, M4N was found to inhibit doxorubicin-induced MDR1 gene expression in drug sensitive MCF-7 breast cancer cells.
M4N and maltose-tri-O-methyl nordihydroguaiaretic acid (maltose-M3N), a water-soluble derivative of NDGA, were also able to reverse the MDR phenotype of the tumor cells in a xenograft model system and combination therapy with M4N or maltose-M3N and paclitaxel was effective at inhibiting growth of these tumors in nude mice.</description><identifier>ISSN: 0344-5704</identifier><identifier>EISSN: 1432-0843</identifier><identifier>DOI: 10.1007/s00280-006-0214-9</identifier><identifier>PMID: 16544145</identifier><identifier>CODEN: CCPHDZ</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject><![CDATA[Animals ; Antineoplastic agents ; Antineoplastic Agents, Phytogenic - pharmacology ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; ATP-Binding Cassette, Sub-Family B, Member 1 - antagonists & inhibitors ; ATP-Binding Cassette, Sub-Family B, Member 1 - genetics ; ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism ; Biological and medical sciences ; Blotting, Western ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cell Line, Tumor ; Dose-Response Relationship, Drug ; Doxorubicin - administration & dosage ; Doxorubicin - pharmacology ; Drug Resistance, Multiple - drug effects ; Drug Resistance, Multiple - genetics ; Drug Resistance, Neoplasm - drug effects ; Drug Resistance, Neoplasm - genetics ; Female ; Gene Expression - drug effects ; Humans ; Masoprocol - administration & dosage ; Masoprocol - analogs & derivatives ; Masoprocol - pharmacology ; Medical sciences ; Mice ; Mice, Nude ; Monosaccharides - administration & dosage ; Monosaccharides - pharmacology ; Paclitaxel - administration & dosage ; Paclitaxel - pharmacology ; Pharmacology. Drug treatments ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Xenograft Model Antitumor Assays - methods]]></subject><ispartof>Cancer chemotherapy and pharmacology, 2006-11, Vol.58 (5), p.640-653</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-43a59b2be4bae5c040842ccecdf5c5d6a438202699d9b8a7255d271df276c7883</citedby><cites>FETCH-LOGICAL-c356t-43a59b2be4bae5c040842ccecdf5c5d6a438202699d9b8a7255d271df276c7883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18031640$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16544145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CHANG, Chih-Chuan</creatorcontrib><creatorcontrib>LIANG, Yu-Chuan</creatorcontrib><creatorcontrib>KLUTZ, Athena</creatorcontrib><creatorcontrib>HSU, Chuan-I</creatorcontrib><creatorcontrib>LIN, Chien-Fu</creatorcontrib><creatorcontrib>MOLD, David E</creatorcontrib><creatorcontrib>CHOU, Ting-Chao</creatorcontrib><creatorcontrib>YUAN CHUAN LEE</creatorcontrib><creatorcontrib>HUANG, Ru Chih C</creatorcontrib><title>Reversal of multidrug resistance by two nordihydroguaiaretic acid derivatives, M4N and maltose-M3N, and their use in combination with doxorubicin or paclitaxel</title><title>Cancer chemotherapy and pharmacology</title><addtitle>Cancer Chemother Pharmacol</addtitle><description>Multidrug resistance (MDR) continues to be a major obstacle for successful anticancer therapy. One of the principal factors implicated in MDR is the over expression of P-glycoprotein (Pgp), the product of the MDR1 gene.
Here we explore the possibility of using the transcription inhibitor tetra-O-methyl nordihydroguaiaretic acid (M4N) to inhibit Sp1-regulated MDR1 gene expression and restore doxorubicin and paclitaxel sensitivity to multidrug resistant human cancer cells in vitro and in vivo.
We found that M4N acted synergistically with doxorubicin and paclitaxel in inhibiting the growth of the cells in culture allowing significant dose reductions of both drugs. We observed no such synergism when M4N was used in combination with cisplatin, another chemotherapeutic agent, but not a Pgp substrate, as analyzed by the combination index and isobologram methods. Analysis of MDR1 mRNA and Pgp levels revealed that at sublethal doses, M4N inhibited MDR1 gene expression in the multidrug resistant NCI/ADR-RES cells and reversed the MDR phenotype as measured by Rhodamine-123 retention. In addition, M4N was found to inhibit doxorubicin-induced MDR1 gene expression in drug sensitive MCF-7 breast cancer cells.
M4N and maltose-tri-O-methyl nordihydroguaiaretic acid (maltose-M3N), a water-soluble derivative of NDGA, were also able to reverse the MDR phenotype of the tumor cells in a xenograft model system and combination therapy with M4N or maltose-M3N and paclitaxel was effective at inhibiting growth of these tumors in nude mice.</description><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - antagonists & inhibitors</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - genetics</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Dose-Response Relationship, Drug</subject><subject>Doxorubicin - administration & dosage</subject><subject>Doxorubicin - pharmacology</subject><subject>Drug Resistance, Multiple - drug effects</subject><subject>Drug Resistance, Multiple - genetics</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Female</subject><subject>Gene Expression - drug effects</subject><subject>Humans</subject><subject>Masoprocol - administration & dosage</subject><subject>Masoprocol - analogs & derivatives</subject><subject>Masoprocol - pharmacology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Monosaccharides - administration & dosage</subject><subject>Monosaccharides - pharmacology</subject><subject>Paclitaxel - administration & dosage</subject><subject>Paclitaxel - pharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Xenograft Model Antitumor Assays - methods</subject><issn>0344-5704</issn><issn>1432-0843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkd9rFDEQx4Mo9lr9A3yRIOhTVye_drOPpWgV2gqizyGbzPZSdjdnkr32_hr_Vfe8g4JPAzOf-TLMh5A3DD4ygOZTBuAaKoC6As5k1T4jKyYFr0BL8ZysQEhZqQbkCTnN-R4AJBPiJTlhtZKSSbUif37gFlO2A409HeehBJ_mO5owh1zs5JB2O1oeIp1i8mG98ynezTbYhCU4al3w1GMKW1vCFvM5vZG31E6ejnYoMWN1I27P_zXKGkOic0YaJuri2IVp2YkTfQhlTX18jGnugluGMdGNdUMo9hGHV-RFb4eMr4_1jPz68vnn5dfq-vvVt8uL68oJVZdKCqvajncoO4vKgVw-wJ1D53vllK-tFJoDr9vWt522DVfK84b5nje1a7QWZ-TDIXeT4u8ZczFjyA6HwU4Y52xq3bBWNu0CvvsPvI9zmpbbDGdCMt3KeoHYAXIp5pywN5sURpt2hoHZqzMHdWZRZ_bqzD747TF47kb0TxtHVwvw_gjY7OzQp0VPyE-cBsFqCeIvyj-jXA</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>CHANG, Chih-Chuan</creator><creator>LIANG, Yu-Chuan</creator><creator>KLUTZ, Athena</creator><creator>HSU, Chuan-I</creator><creator>LIN, Chien-Fu</creator><creator>MOLD, David E</creator><creator>CHOU, Ting-Chao</creator><creator>YUAN CHUAN LEE</creator><creator>HUANG, Ru Chih C</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20061101</creationdate><title>Reversal of multidrug resistance by two nordihydroguaiaretic acid derivatives, M4N and maltose-M3N, and their use in combination with doxorubicin or paclitaxel</title><author>CHANG, Chih-Chuan ; LIANG, Yu-Chuan ; KLUTZ, Athena ; HSU, Chuan-I ; LIN, Chien-Fu ; MOLD, David E ; CHOU, Ting-Chao ; YUAN CHUAN LEE ; HUANG, Ru Chih C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-43a59b2be4bae5c040842ccecdf5c5d6a438202699d9b8a7255d271df276c7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - antagonists & inhibitors</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - genetics</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Dose-Response Relationship, Drug</topic><topic>Doxorubicin - administration & dosage</topic><topic>Doxorubicin - pharmacology</topic><topic>Drug Resistance, Multiple - drug effects</topic><topic>Drug Resistance, Multiple - genetics</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Female</topic><topic>Gene Expression - drug effects</topic><topic>Humans</topic><topic>Masoprocol - administration & dosage</topic><topic>Masoprocol - analogs & derivatives</topic><topic>Masoprocol - pharmacology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Monosaccharides - administration & dosage</topic><topic>Monosaccharides - pharmacology</topic><topic>Paclitaxel - administration & dosage</topic><topic>Paclitaxel - pharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Xenograft Model Antitumor Assays - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHANG, Chih-Chuan</creatorcontrib><creatorcontrib>LIANG, Yu-Chuan</creatorcontrib><creatorcontrib>KLUTZ, Athena</creatorcontrib><creatorcontrib>HSU, Chuan-I</creatorcontrib><creatorcontrib>LIN, Chien-Fu</creatorcontrib><creatorcontrib>MOLD, David E</creatorcontrib><creatorcontrib>CHOU, Ting-Chao</creatorcontrib><creatorcontrib>YUAN CHUAN LEE</creatorcontrib><creatorcontrib>HUANG, Ru Chih C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer chemotherapy and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHANG, Chih-Chuan</au><au>LIANG, Yu-Chuan</au><au>KLUTZ, Athena</au><au>HSU, Chuan-I</au><au>LIN, Chien-Fu</au><au>MOLD, David E</au><au>CHOU, Ting-Chao</au><au>YUAN CHUAN LEE</au><au>HUANG, Ru Chih C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversal of multidrug resistance by two nordihydroguaiaretic acid derivatives, M4N and maltose-M3N, and their use in combination with doxorubicin or paclitaxel</atitle><jtitle>Cancer chemotherapy and pharmacology</jtitle><addtitle>Cancer Chemother Pharmacol</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>58</volume><issue>5</issue><spage>640</spage><epage>653</epage><pages>640-653</pages><issn>0344-5704</issn><eissn>1432-0843</eissn><coden>CCPHDZ</coden><abstract>Multidrug resistance (MDR) continues to be a major obstacle for successful anticancer therapy. One of the principal factors implicated in MDR is the over expression of P-glycoprotein (Pgp), the product of the MDR1 gene.
Here we explore the possibility of using the transcription inhibitor tetra-O-methyl nordihydroguaiaretic acid (M4N) to inhibit Sp1-regulated MDR1 gene expression and restore doxorubicin and paclitaxel sensitivity to multidrug resistant human cancer cells in vitro and in vivo.
We found that M4N acted synergistically with doxorubicin and paclitaxel in inhibiting the growth of the cells in culture allowing significant dose reductions of both drugs. We observed no such synergism when M4N was used in combination with cisplatin, another chemotherapeutic agent, but not a Pgp substrate, as analyzed by the combination index and isobologram methods. Analysis of MDR1 mRNA and Pgp levels revealed that at sublethal doses, M4N inhibited MDR1 gene expression in the multidrug resistant NCI/ADR-RES cells and reversed the MDR phenotype as measured by Rhodamine-123 retention. In addition, M4N was found to inhibit doxorubicin-induced MDR1 gene expression in drug sensitive MCF-7 breast cancer cells.
M4N and maltose-tri-O-methyl nordihydroguaiaretic acid (maltose-M3N), a water-soluble derivative of NDGA, were also able to reverse the MDR phenotype of the tumor cells in a xenograft model system and combination therapy with M4N or maltose-M3N and paclitaxel was effective at inhibiting growth of these tumors in nude mice.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>16544145</pmid><doi>10.1007/s00280-006-0214-9</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0344-5704 |
ispartof | Cancer chemotherapy and pharmacology, 2006-11, Vol.58 (5), p.640-653 |
issn | 0344-5704 1432-0843 |
language | eng |
recordid | cdi_proquest_miscellaneous_68719479 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Antineoplastic agents Antineoplastic Agents, Phytogenic - pharmacology Antineoplastic Combined Chemotherapy Protocols - therapeutic use ATP-Binding Cassette, Sub-Family B, Member 1 - antagonists & inhibitors ATP-Binding Cassette, Sub-Family B, Member 1 - genetics ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism Biological and medical sciences Blotting, Western Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Cell Line, Tumor Dose-Response Relationship, Drug Doxorubicin - administration & dosage Doxorubicin - pharmacology Drug Resistance, Multiple - drug effects Drug Resistance, Multiple - genetics Drug Resistance, Neoplasm - drug effects Drug Resistance, Neoplasm - genetics Female Gene Expression - drug effects Humans Masoprocol - administration & dosage Masoprocol - analogs & derivatives Masoprocol - pharmacology Medical sciences Mice Mice, Nude Monosaccharides - administration & dosage Monosaccharides - pharmacology Paclitaxel - administration & dosage Paclitaxel - pharmacology Pharmacology. Drug treatments Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics RNA, Messenger - metabolism Xenograft Model Antitumor Assays - methods |
title | Reversal of multidrug resistance by two nordihydroguaiaretic acid derivatives, M4N and maltose-M3N, and their use in combination with doxorubicin or paclitaxel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversal%20of%20multidrug%20resistance%20by%20two%20nordihydroguaiaretic%20acid%20derivatives,%20M4N%20and%20maltose-M3N,%20and%20their%20use%20in%20combination%20with%20doxorubicin%20or%20paclitaxel&rft.jtitle=Cancer%20chemotherapy%20and%20pharmacology&rft.au=CHANG,%20Chih-Chuan&rft.date=2006-11-01&rft.volume=58&rft.issue=5&rft.spage=640&rft.epage=653&rft.pages=640-653&rft.issn=0344-5704&rft.eissn=1432-0843&rft.coden=CCPHDZ&rft_id=info:doi/10.1007/s00280-006-0214-9&rft_dat=%3Cproquest_cross%3E68719479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213418946&rft_id=info:pmid/16544145&rfr_iscdi=true |