Scanning microarrays at multiple intensities enhances discovery of differentially expressed genes

Motivation: Scanning parameters are often overlooked when optimizing microarray experiments. A scanning approach that extends the dynamic data range by acquiring multiple scans of different intensities has been developed. Results: Data from each of three scan intensities (low, medium, high) were ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2006-08, Vol.22 (15), p.1863-1870
Hauptverfasser: Skibbe, David S., Wang, Xiujuan, Zhao, Xuefeng, Borsuk, Lisa A., Nettleton, Dan, Schnable, Patrick S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1870
container_issue 15
container_start_page 1863
container_title Bioinformatics
container_volume 22
creator Skibbe, David S.
Wang, Xiujuan
Zhao, Xuefeng
Borsuk, Lisa A.
Nettleton, Dan
Schnable, Patrick S.
description Motivation: Scanning parameters are often overlooked when optimizing microarray experiments. A scanning approach that extends the dynamic data range by acquiring multiple scans of different intensities has been developed. Results: Data from each of three scan intensities (low, medium, high) were analyzed separately using multiple scan and linear regression approaches to identify and compare the sets of genes that exhibit statistically significant differential expression. In the multiple scan approach only one-third of the differentially expressed genes were shared among the three intensities, and each scan intensity identified unique sets of differentially expressed genes. The set of differentially expressed genes from any one scan amounted to
doi_str_mv 10.1093/bioinformatics/btl270
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68714730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19464979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-f629a0e9780158a91dab26f599a74b00792506edc8eed81841995088339c43d33</originalsourceid><addsrcrecordid>eNqFkV1rFTEQhhdRbK3-BGUR9G5tvj8utWgrHhCpongTstlJTc1mj0lWev69kXOw6I1XmZBnXibzdN1jjF5gpOnpGJaQ_JJnW4Mrp2ONRKI73TFmAg0EcX231VTIgSlEj7oHpVwjxDFj7H53hIWkWGh-3NlLZ1MK6aqfg8uLzdnuSm9rP6-xhm2EPqQKqYQaoPSQvtnkWjGF4pafkHf94tvFe8iQarAx7nq42WYoBab-ChKUh909b2OBR4fzpPv05vXHs4th8_787dnLzeDahHXwgmiLQEuFMFdW48mORHiutZVsREhqwpGAySmASWHFsNYcKUWpdoxOlJ50z_e527z8WKFUM7chIUabYFmLEUpiJin6L4g1E0xL3cCn_4DXy5pT-0RjlKSaCNwgvofa9krJ4M02h9nmncHI_DZl_jZl9qZa35ND-DrOMN12HdQ04NkBsMXZ6HPbfCi3XNNKsCKNG_ZcKBVu_rzb_N20KMnNxZev5hXekMt3Hz6bc_oLWgexog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198739261</pqid></control><display><type>article</type><title>Scanning microarrays at multiple intensities enhances discovery of differentially expressed genes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Skibbe, David S. ; Wang, Xiujuan ; Zhao, Xuefeng ; Borsuk, Lisa A. ; Nettleton, Dan ; Schnable, Patrick S.</creator><creatorcontrib>Skibbe, David S. ; Wang, Xiujuan ; Zhao, Xuefeng ; Borsuk, Lisa A. ; Nettleton, Dan ; Schnable, Patrick S.</creatorcontrib><description>Motivation: Scanning parameters are often overlooked when optimizing microarray experiments. A scanning approach that extends the dynamic data range by acquiring multiple scans of different intensities has been developed. Results: Data from each of three scan intensities (low, medium, high) were analyzed separately using multiple scan and linear regression approaches to identify and compare the sets of genes that exhibit statistically significant differential expression. In the multiple scan approach only one-third of the differentially expressed genes were shared among the three intensities, and each scan intensity identified unique sets of differentially expressed genes. The set of differentially expressed genes from any one scan amounted to &lt;70% of the total number of genes identified in at least one scan. The average signal intensity of genes that exhibited statistically significant changes in expression was highest for the low-intensity scan and lowest for the high-intensity scan, suggesting that low-intensity scans may be best for detecting expression differences in high-signal genes, while high-intensity scans may be best for detecting expression differences in low-signal genes. Comparison of the differentially expressed genes identified in the multiple scan and linear regression approaches revealed that the multiple scan approach effectively identifies a subset of statistically significant genes that linear regression approach is unable to identify. Quantitative RT–PCR (qRT–PCR) tests demonstrated that statistically significant differences identified at all three scan intensities can be verified. Availability: The data presented can be viewed at under GEO accession no. GSE3017. Contact: schnable@iastate.edu Supplementary information: Data from these experiments can be viewed at</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btl270</identifier><identifier>PMID: 16731695</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; General aspects ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; In Situ Hybridization, Fluorescence - methods ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Microscopy, Confocal - methods ; Microscopy, Fluorescence - methods ; Oligonucleotide Array Sequence Analysis - methods ; Plant Proteins - analysis ; Plant Proteins - genetics ; Zea mays - genetics ; Zea mays - metabolism</subject><ispartof>Bioinformatics, 2006-08, Vol.22 (15), p.1863-1870</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Aug 1, 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-f629a0e9780158a91dab26f599a74b00792506edc8eed81841995088339c43d33</citedby><cites>FETCH-LOGICAL-c480t-f629a0e9780158a91dab26f599a74b00792506edc8eed81841995088339c43d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18032182$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16731695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skibbe, David S.</creatorcontrib><creatorcontrib>Wang, Xiujuan</creatorcontrib><creatorcontrib>Zhao, Xuefeng</creatorcontrib><creatorcontrib>Borsuk, Lisa A.</creatorcontrib><creatorcontrib>Nettleton, Dan</creatorcontrib><creatorcontrib>Schnable, Patrick S.</creatorcontrib><title>Scanning microarrays at multiple intensities enhances discovery of differentially expressed genes</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Scanning parameters are often overlooked when optimizing microarray experiments. A scanning approach that extends the dynamic data range by acquiring multiple scans of different intensities has been developed. Results: Data from each of three scan intensities (low, medium, high) were analyzed separately using multiple scan and linear regression approaches to identify and compare the sets of genes that exhibit statistically significant differential expression. In the multiple scan approach only one-third of the differentially expressed genes were shared among the three intensities, and each scan intensity identified unique sets of differentially expressed genes. The set of differentially expressed genes from any one scan amounted to &lt;70% of the total number of genes identified in at least one scan. The average signal intensity of genes that exhibited statistically significant changes in expression was highest for the low-intensity scan and lowest for the high-intensity scan, suggesting that low-intensity scans may be best for detecting expression differences in high-signal genes, while high-intensity scans may be best for detecting expression differences in low-signal genes. Comparison of the differentially expressed genes identified in the multiple scan and linear regression approaches revealed that the multiple scan approach effectively identifies a subset of statistically significant genes that linear regression approach is unable to identify. Quantitative RT–PCR (qRT–PCR) tests demonstrated that statistically significant differences identified at all three scan intensities can be verified. Availability: The data presented can be viewed at under GEO accession no. GSE3017. Contact: schnable@iastate.edu Supplementary information: Data from these experiments can be viewed at</description><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>In Situ Hybridization, Fluorescence - methods</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Microscopy, Confocal - methods</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Plant Proteins - analysis</subject><subject>Plant Proteins - genetics</subject><subject>Zea mays - genetics</subject><subject>Zea mays - metabolism</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFTEQhhdRbK3-BGUR9G5tvj8utWgrHhCpongTstlJTc1mj0lWev69kXOw6I1XmZBnXibzdN1jjF5gpOnpGJaQ_JJnW4Mrp2ONRKI73TFmAg0EcX231VTIgSlEj7oHpVwjxDFj7H53hIWkWGh-3NlLZ1MK6aqfg8uLzdnuSm9rP6-xhm2EPqQKqYQaoPSQvtnkWjGF4pafkHf94tvFe8iQarAx7nq42WYoBab-ChKUh909b2OBR4fzpPv05vXHs4th8_787dnLzeDahHXwgmiLQEuFMFdW48mORHiutZVsREhqwpGAySmASWHFsNYcKUWpdoxOlJ50z_e527z8WKFUM7chIUabYFmLEUpiJin6L4g1E0xL3cCn_4DXy5pT-0RjlKSaCNwgvofa9krJ4M02h9nmncHI_DZl_jZl9qZa35ND-DrOMN12HdQ04NkBsMXZ6HPbfCi3XNNKsCKNG_ZcKBVu_rzb_N20KMnNxZev5hXekMt3Hz6bc_oLWgexog</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Skibbe, David S.</creator><creator>Wang, Xiujuan</creator><creator>Zhao, Xuefeng</creator><creator>Borsuk, Lisa A.</creator><creator>Nettleton, Dan</creator><creator>Schnable, Patrick S.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Scanning microarrays at multiple intensities enhances discovery of differentially expressed genes</title><author>Skibbe, David S. ; Wang, Xiujuan ; Zhao, Xuefeng ; Borsuk, Lisa A. ; Nettleton, Dan ; Schnable, Patrick S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-f629a0e9780158a91dab26f599a74b00792506edc8eed81841995088339c43d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>In Situ Hybridization, Fluorescence - methods</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Microscopy, Confocal - methods</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Plant Proteins - analysis</topic><topic>Plant Proteins - genetics</topic><topic>Zea mays - genetics</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skibbe, David S.</creatorcontrib><creatorcontrib>Wang, Xiujuan</creatorcontrib><creatorcontrib>Zhao, Xuefeng</creatorcontrib><creatorcontrib>Borsuk, Lisa A.</creatorcontrib><creatorcontrib>Nettleton, Dan</creatorcontrib><creatorcontrib>Schnable, Patrick S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skibbe, David S.</au><au>Wang, Xiujuan</au><au>Zhao, Xuefeng</au><au>Borsuk, Lisa A.</au><au>Nettleton, Dan</au><au>Schnable, Patrick S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanning microarrays at multiple intensities enhances discovery of differentially expressed genes</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>22</volume><issue>15</issue><spage>1863</spage><epage>1870</epage><pages>1863-1870</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Scanning parameters are often overlooked when optimizing microarray experiments. A scanning approach that extends the dynamic data range by acquiring multiple scans of different intensities has been developed. Results: Data from each of three scan intensities (low, medium, high) were analyzed separately using multiple scan and linear regression approaches to identify and compare the sets of genes that exhibit statistically significant differential expression. In the multiple scan approach only one-third of the differentially expressed genes were shared among the three intensities, and each scan intensity identified unique sets of differentially expressed genes. The set of differentially expressed genes from any one scan amounted to &lt;70% of the total number of genes identified in at least one scan. The average signal intensity of genes that exhibited statistically significant changes in expression was highest for the low-intensity scan and lowest for the high-intensity scan, suggesting that low-intensity scans may be best for detecting expression differences in high-signal genes, while high-intensity scans may be best for detecting expression differences in low-signal genes. Comparison of the differentially expressed genes identified in the multiple scan and linear regression approaches revealed that the multiple scan approach effectively identifies a subset of statistically significant genes that linear regression approach is unable to identify. Quantitative RT–PCR (qRT–PCR) tests demonstrated that statistically significant differences identified at all three scan intensities can be verified. Availability: The data presented can be viewed at under GEO accession no. GSE3017. Contact: schnable@iastate.edu Supplementary information: Data from these experiments can be viewed at</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16731695</pmid><doi>10.1093/bioinformatics/btl270</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2006-08, Vol.22 (15), p.1863-1870
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_68714730
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; Alma/SFX Local Collection
subjects Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
In Situ Hybridization, Fluorescence - methods
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Microscopy, Confocal - methods
Microscopy, Fluorescence - methods
Oligonucleotide Array Sequence Analysis - methods
Plant Proteins - analysis
Plant Proteins - genetics
Zea mays - genetics
Zea mays - metabolism
title Scanning microarrays at multiple intensities enhances discovery of differentially expressed genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanning%20microarrays%20at%20multiple%20intensities%20enhances%20discovery%20of%20differentially%20expressed%20genes&rft.jtitle=Bioinformatics&rft.au=Skibbe,%20David%20S.&rft.date=2006-08-01&rft.volume=22&rft.issue=15&rft.spage=1863&rft.epage=1870&rft.pages=1863-1870&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btl270&rft_dat=%3Cproquest_cross%3E19464979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198739261&rft_id=info:pmid/16731695&rfr_iscdi=true