Exploring the Mechanical Properties of Single Vimentin Intermediate Filaments by Atomic Force Microscopy

Intermediate filaments (IFs), together with actin filaments and microtubules, compose the cytoskeleton. Among other functions, IFs impart mechanical stability to cells when exposed to mechanical stress and act as a support when the other cytoskeletal filaments cannot keep the structural integrity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2006-07, Vol.360 (3), p.623-630
Hauptverfasser: Guzmán, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A.J., Aebi, U., Forró, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 630
container_issue 3
container_start_page 623
container_title Journal of molecular biology
container_volume 360
creator Guzmán, C.
Jeney, S.
Kreplak, L.
Kasas, S.
Kulik, A.J.
Aebi, U.
Forró, L.
description Intermediate filaments (IFs), together with actin filaments and microtubules, compose the cytoskeleton. Among other functions, IFs impart mechanical stability to cells when exposed to mechanical stress and act as a support when the other cytoskeletal filaments cannot keep the structural integrity of the cells. Here we present a study on the bending properties of single vimentin IFs in which we used an atomic force microscopy (AFM) tip to elastically deform single filaments hanging over a porous membrane. We obtained a value for the bending modulus of non-stabilized IFs between 300 MPa and 400 MPa. Our results together with previous ones suggest that IFs present axial sliding between their constitutive building blocks and therefore have a bending modulus that depends on the filament length. Measurements of glutaraldehyde-stabilized filaments were also performed to reduce the axial sliding between subunits and therefore provide a lower limit estimate of the Young's modulus of the filaments. The results show an increment of two to three times in the bending modulus for the stabilized IFs with respect to the non-stabilized ones, suggesting that the Young's modulus of vimentin IFs should be around 900 MPa or higher.
doi_str_mv 10.1016/j.jmb.2006.05.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68714522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283606006115</els_id><sourcerecordid>68714522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-dfd25fcc0b1848af7c0757189a400c0957dd1c4144454bce8ea60b46c8b1c2263</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxYMo7rj6AbxITt66raSTdBpPy7KjCysK_rmGdLraydDdaZPM4nx7M8yANz0VFL_3inqPkNcMagZMvdvX-7mvOYCqQdbQwBOyYaC7SqtGPyUbAM4rrht1RV6ktAcA2Qj9nFwx1SrZabkhu7vf6xSiX37SvEP6Cd3OLt7ZiX6JYcWYPSYaRvq1EBPSH37GJfuF3i8Z44yDtxnp1k_2tE-0P9KbHGbv6DZEV_y8iyG5sB5fkmejnRK-usxr8n179-32Y_Xw-cP97c1D5UTHcjWMA5ejc9AzLbQdWwetbJnurABw0Ml2GJgTTAghRe9Qo1XQC-V0zxznqrkmb8--awy_DpiymX1yOE12wXBIRumWCcn5f0HWclUO6wKyM3h6JUUczRr9bOPRMDCnHszelB7MqQcD0pQeiubNxfzQl5T-Ki7BF-D9GcCSxaPHaJLzuLiSaESXzRD8P-z_AIC6mUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17267188</pqid></control><display><type>article</type><title>Exploring the Mechanical Properties of Single Vimentin Intermediate Filaments by Atomic Force Microscopy</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Guzmán, C. ; Jeney, S. ; Kreplak, L. ; Kasas, S. ; Kulik, A.J. ; Aebi, U. ; Forró, L.</creator><creatorcontrib>Guzmán, C. ; Jeney, S. ; Kreplak, L. ; Kasas, S. ; Kulik, A.J. ; Aebi, U. ; Forró, L.</creatorcontrib><description>Intermediate filaments (IFs), together with actin filaments and microtubules, compose the cytoskeleton. Among other functions, IFs impart mechanical stability to cells when exposed to mechanical stress and act as a support when the other cytoskeletal filaments cannot keep the structural integrity of the cells. Here we present a study on the bending properties of single vimentin IFs in which we used an atomic force microscopy (AFM) tip to elastically deform single filaments hanging over a porous membrane. We obtained a value for the bending modulus of non-stabilized IFs between 300 MPa and 400 MPa. Our results together with previous ones suggest that IFs present axial sliding between their constitutive building blocks and therefore have a bending modulus that depends on the filament length. Measurements of glutaraldehyde-stabilized filaments were also performed to reduce the axial sliding between subunits and therefore provide a lower limit estimate of the Young's modulus of the filaments. The results show an increment of two to three times in the bending modulus for the stabilized IFs with respect to the non-stabilized ones, suggesting that the Young's modulus of vimentin IFs should be around 900 MPa or higher.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2006.05.030</identifier><identifier>PMID: 16765985</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aluminum Oxide - chemistry ; Animals ; atomic force microscopy ; axial sliding between dimmers ; bending stiffness ; Biomechanical Phenomena ; Cricetinae ; glutaraldehyde-stabilized filaments ; intermediate filaments ; Intermediate Filaments - chemistry ; Intermediate Filaments - ultrastructure ; Microscopy, Atomic Force ; Thermodynamics ; vimentin ; Vimentin - chemistry ; Vimentin - ultrastructure</subject><ispartof>Journal of molecular biology, 2006-07, Vol.360 (3), p.623-630</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-dfd25fcc0b1848af7c0757189a400c0957dd1c4144454bce8ea60b46c8b1c2263</citedby><cites>FETCH-LOGICAL-c491t-dfd25fcc0b1848af7c0757189a400c0957dd1c4144454bce8ea60b46c8b1c2263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2006.05.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16765985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guzmán, C.</creatorcontrib><creatorcontrib>Jeney, S.</creatorcontrib><creatorcontrib>Kreplak, L.</creatorcontrib><creatorcontrib>Kasas, S.</creatorcontrib><creatorcontrib>Kulik, A.J.</creatorcontrib><creatorcontrib>Aebi, U.</creatorcontrib><creatorcontrib>Forró, L.</creatorcontrib><title>Exploring the Mechanical Properties of Single Vimentin Intermediate Filaments by Atomic Force Microscopy</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Intermediate filaments (IFs), together with actin filaments and microtubules, compose the cytoskeleton. Among other functions, IFs impart mechanical stability to cells when exposed to mechanical stress and act as a support when the other cytoskeletal filaments cannot keep the structural integrity of the cells. Here we present a study on the bending properties of single vimentin IFs in which we used an atomic force microscopy (AFM) tip to elastically deform single filaments hanging over a porous membrane. We obtained a value for the bending modulus of non-stabilized IFs between 300 MPa and 400 MPa. Our results together with previous ones suggest that IFs present axial sliding between their constitutive building blocks and therefore have a bending modulus that depends on the filament length. Measurements of glutaraldehyde-stabilized filaments were also performed to reduce the axial sliding between subunits and therefore provide a lower limit estimate of the Young's modulus of the filaments. The results show an increment of two to three times in the bending modulus for the stabilized IFs with respect to the non-stabilized ones, suggesting that the Young's modulus of vimentin IFs should be around 900 MPa or higher.</description><subject>Aluminum Oxide - chemistry</subject><subject>Animals</subject><subject>atomic force microscopy</subject><subject>axial sliding between dimmers</subject><subject>bending stiffness</subject><subject>Biomechanical Phenomena</subject><subject>Cricetinae</subject><subject>glutaraldehyde-stabilized filaments</subject><subject>intermediate filaments</subject><subject>Intermediate Filaments - chemistry</subject><subject>Intermediate Filaments - ultrastructure</subject><subject>Microscopy, Atomic Force</subject><subject>Thermodynamics</subject><subject>vimentin</subject><subject>Vimentin - chemistry</subject><subject>Vimentin - ultrastructure</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU-LFDEQxYMo7rj6AbxITt66raSTdBpPy7KjCysK_rmGdLraydDdaZPM4nx7M8yANz0VFL_3inqPkNcMagZMvdvX-7mvOYCqQdbQwBOyYaC7SqtGPyUbAM4rrht1RV6ktAcA2Qj9nFwx1SrZabkhu7vf6xSiX37SvEP6Cd3OLt7ZiX6JYcWYPSYaRvq1EBPSH37GJfuF3i8Z44yDtxnp1k_2tE-0P9KbHGbv6DZEV_y8iyG5sB5fkmejnRK-usxr8n179-32Y_Xw-cP97c1D5UTHcjWMA5ejc9AzLbQdWwetbJnurABw0Ml2GJgTTAghRe9Qo1XQC-V0zxznqrkmb8--awy_DpiymX1yOE12wXBIRumWCcn5f0HWclUO6wKyM3h6JUUczRr9bOPRMDCnHszelB7MqQcD0pQeiubNxfzQl5T-Ki7BF-D9GcCSxaPHaJLzuLiSaESXzRD8P-z_AIC6mUQ</recordid><startdate>20060714</startdate><enddate>20060714</enddate><creator>Guzmán, C.</creator><creator>Jeney, S.</creator><creator>Kreplak, L.</creator><creator>Kasas, S.</creator><creator>Kulik, A.J.</creator><creator>Aebi, U.</creator><creator>Forró, L.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060714</creationdate><title>Exploring the Mechanical Properties of Single Vimentin Intermediate Filaments by Atomic Force Microscopy</title><author>Guzmán, C. ; Jeney, S. ; Kreplak, L. ; Kasas, S. ; Kulik, A.J. ; Aebi, U. ; Forró, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-dfd25fcc0b1848af7c0757189a400c0957dd1c4144454bce8ea60b46c8b1c2263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aluminum Oxide - chemistry</topic><topic>Animals</topic><topic>atomic force microscopy</topic><topic>axial sliding between dimmers</topic><topic>bending stiffness</topic><topic>Biomechanical Phenomena</topic><topic>Cricetinae</topic><topic>glutaraldehyde-stabilized filaments</topic><topic>intermediate filaments</topic><topic>Intermediate Filaments - chemistry</topic><topic>Intermediate Filaments - ultrastructure</topic><topic>Microscopy, Atomic Force</topic><topic>Thermodynamics</topic><topic>vimentin</topic><topic>Vimentin - chemistry</topic><topic>Vimentin - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzmán, C.</creatorcontrib><creatorcontrib>Jeney, S.</creatorcontrib><creatorcontrib>Kreplak, L.</creatorcontrib><creatorcontrib>Kasas, S.</creatorcontrib><creatorcontrib>Kulik, A.J.</creatorcontrib><creatorcontrib>Aebi, U.</creatorcontrib><creatorcontrib>Forró, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzmán, C.</au><au>Jeney, S.</au><au>Kreplak, L.</au><au>Kasas, S.</au><au>Kulik, A.J.</au><au>Aebi, U.</au><au>Forró, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Mechanical Properties of Single Vimentin Intermediate Filaments by Atomic Force Microscopy</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2006-07-14</date><risdate>2006</risdate><volume>360</volume><issue>3</issue><spage>623</spage><epage>630</epage><pages>623-630</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Intermediate filaments (IFs), together with actin filaments and microtubules, compose the cytoskeleton. Among other functions, IFs impart mechanical stability to cells when exposed to mechanical stress and act as a support when the other cytoskeletal filaments cannot keep the structural integrity of the cells. Here we present a study on the bending properties of single vimentin IFs in which we used an atomic force microscopy (AFM) tip to elastically deform single filaments hanging over a porous membrane. We obtained a value for the bending modulus of non-stabilized IFs between 300 MPa and 400 MPa. Our results together with previous ones suggest that IFs present axial sliding between their constitutive building blocks and therefore have a bending modulus that depends on the filament length. Measurements of glutaraldehyde-stabilized filaments were also performed to reduce the axial sliding between subunits and therefore provide a lower limit estimate of the Young's modulus of the filaments. The results show an increment of two to three times in the bending modulus for the stabilized IFs with respect to the non-stabilized ones, suggesting that the Young's modulus of vimentin IFs should be around 900 MPa or higher.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>16765985</pmid><doi>10.1016/j.jmb.2006.05.030</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2006-07, Vol.360 (3), p.623-630
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_68714522
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Aluminum Oxide - chemistry
Animals
atomic force microscopy
axial sliding between dimmers
bending stiffness
Biomechanical Phenomena
Cricetinae
glutaraldehyde-stabilized filaments
intermediate filaments
Intermediate Filaments - chemistry
Intermediate Filaments - ultrastructure
Microscopy, Atomic Force
Thermodynamics
vimentin
Vimentin - chemistry
Vimentin - ultrastructure
title Exploring the Mechanical Properties of Single Vimentin Intermediate Filaments by Atomic Force Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Mechanical%20Properties%20of%20Single%20Vimentin%20Intermediate%20Filaments%20by%20Atomic%20Force%20Microscopy&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Guzm%C3%A1n,%20C.&rft.date=2006-07-14&rft.volume=360&rft.issue=3&rft.spage=623&rft.epage=630&rft.pages=623-630&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2006.05.030&rft_dat=%3Cproquest_cross%3E68714522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17267188&rft_id=info:pmid/16765985&rft_els_id=S0022283606006115&rfr_iscdi=true