Structural, functional, and phylogenetic characterization of a large CBF gene family in barley

CBFs are key regulators in the Arabidopsis cold signaling pathway. We used Hordeum vulgare (barley), an important crop and a diploid Triticeae model, to characterize the CBF family from a low temperature tolerant cereal. We report that barley contains a large CBF family consisting of at least 20 gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2005-11, Vol.59 (4), p.533-551
Hauptverfasser: Skinner, J.S, Von Zitzewitz, J, Szucs, P, Marquez-Cedillo, L, Filichkin, T, Amundsen, K, Stockinger, E.J, Thomashow, M.F, Chen, T.H.H, Hayes, P.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 4
container_start_page 533
container_title Plant molecular biology
container_volume 59
creator Skinner, J.S
Von Zitzewitz, J
Szucs, P
Marquez-Cedillo, L
Filichkin, T
Amundsen, K
Stockinger, E.J
Thomashow, M.F
Chen, T.H.H
Hayes, P.M
description CBFs are key regulators in the Arabidopsis cold signaling pathway. We used Hordeum vulgare (barley), an important crop and a diploid Triticeae model, to characterize the CBF family from a low temperature tolerant cereal. We report that barley contains a large CBF family consisting of at least 20 genes (HvCBFs) comprising three multigene phylogenetic groupings designated the HvCBF1-, HvCBF3-, and HvCBF4-subgroups. For the HvCBF1- and HvCBF3-subgroups, there are comparable levels of phylogenetic diversity among rice, a cold-sensitive cereal, and the cold-hardy Triticeae. For the HvCBF4-subgroup, while similar diversity levels are observed in the Triticeae, only a single ancestral rice member was identified. The barley CBFs share many functional characteristics with dicot CBFs, including a general primary domain structure, transcript accumulation in response to cold, specific binding to the CRT motif, and the capacity to induce cor gene expression when ectopically expressed in Arabidopsis. Individual HvCBF genes differed in response to abiotic stress types and in the response time frame, suggesting different sets of HvCBF genes are employed relative to particular stresses. HvCBFs specifically bound monocot and dicot cor gene CRT elements in vitro under both warm and cold conditions; however, binding of HvCBF4-subgroup members was cold dependent. The temperature-independent HvCBFs activated cor gene expression at warm temperatures in transgenic Arabidopsis, while the cold-dependent HvCBF4-subgroup members of three Triticeae species did not. These results suggest that in the Triticeae - as in Arabidopsis - members of the CBF gene family function as fundamental components of the winter hardiness regulon.
doi_str_mv 10.1007/s11103-005-2498-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68713752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17206206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-d4c6950553662ffe9842a5329a9e35a8613409c443b033d3a151b78ba1993c553</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRzCb6A7xok4MnJ1b15_RRFxOFQA4xV5ua3p7NhNmZtXvmsP769LALghehoOrwvEVRD2PvEK4QwH7OiAiyAtCVUK6uxAu2Qm1lpUHUL9kK0NhKKRRn7DznJ4CSkuY1O0MjlHKgV-zX_ZTmMM2J-k-8nYcwdeOwzDRs-P7x0I_bOMSpCzw8UqIwxdT9oQXiY8uJ95S2ka-_XvOF4y3tuv7Au4E3lPp4eMNetdTn-PbUL9jD9bef6-_V7d3Nj_WX2yooZadqo4JxGrSWxoi2ja5WgrQUjlyUmmqDUoErrGxAyo0k1NjYuiF0ToYSu2Afj3v3afw9xzz5XZdD7Hsa4jhnb2qL0mrxXxCtAFOqgJf_gE_jnMprsrfGGWFcXRcIj1BIY84ptn6fuh2lg0fwiyJ_VOSLIr8o8ssF70-L52YXN38TJycF-HAEWho9bVOX_cO9AJRFn3ZKoHwGP1eS_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>769626988</pqid></control><display><type>article</type><title>Structural, functional, and phylogenetic characterization of a large CBF gene family in barley</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Skinner, J.S ; Von Zitzewitz, J ; Szucs, P ; Marquez-Cedillo, L ; Filichkin, T ; Amundsen, K ; Stockinger, E.J ; Thomashow, M.F ; Chen, T.H.H ; Hayes, P.M</creator><creatorcontrib>Skinner, J.S ; Von Zitzewitz, J ; Szucs, P ; Marquez-Cedillo, L ; Filichkin, T ; Amundsen, K ; Stockinger, E.J ; Thomashow, M.F ; Chen, T.H.H ; Hayes, P.M</creatorcontrib><description>CBFs are key regulators in the Arabidopsis cold signaling pathway. We used Hordeum vulgare (barley), an important crop and a diploid Triticeae model, to characterize the CBF family from a low temperature tolerant cereal. We report that barley contains a large CBF family consisting of at least 20 genes (HvCBFs) comprising three multigene phylogenetic groupings designated the HvCBF1-, HvCBF3-, and HvCBF4-subgroups. For the HvCBF1- and HvCBF3-subgroups, there are comparable levels of phylogenetic diversity among rice, a cold-sensitive cereal, and the cold-hardy Triticeae. For the HvCBF4-subgroup, while similar diversity levels are observed in the Triticeae, only a single ancestral rice member was identified. The barley CBFs share many functional characteristics with dicot CBFs, including a general primary domain structure, transcript accumulation in response to cold, specific binding to the CRT motif, and the capacity to induce cor gene expression when ectopically expressed in Arabidopsis. Individual HvCBF genes differed in response to abiotic stress types and in the response time frame, suggesting different sets of HvCBF genes are employed relative to particular stresses. HvCBFs specifically bound monocot and dicot cor gene CRT elements in vitro under both warm and cold conditions; however, binding of HvCBF4-subgroup members was cold dependent. The temperature-independent HvCBFs activated cor gene expression at warm temperatures in transgenic Arabidopsis, while the cold-dependent HvCBF4-subgroup members of three Triticeae species did not. These results suggest that in the Triticeae - as in Arabidopsis - members of the CBF gene family function as fundamental components of the winter hardiness regulon.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-005-2498-2</identifier><identifier>PMID: 16244905</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>abiotic stress ; Amino Acid Sequence ; amino acid sequences ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis thaliana ; Barley ; Base Sequence ; binding sites ; Cereal crops ; Cold ; cold tolerance ; cor gene ; CRT element ; differential gene expression ; Gene expression ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant ; genes ; Genes, Plant ; Genetics ; Genotype ; Hordeum - genetics ; Hordeum vulgare ; Low temperature ; messenger RNA ; Molecular Sequence Data ; multigene family ; Multigene Family - genetics ; nucleotide sequences ; Oryza sativa ; Phylogeny ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified ; promoter regions ; Rice ; salt stress ; Sequence Homology, Amino Acid ; Sequence Homology, Nucleic Acid ; transcription factors ; transgenic plants ; Triticeae ; water stress</subject><ispartof>Plant molecular biology, 2005-11, Vol.59 (4), p.533-551</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-d4c6950553662ffe9842a5329a9e35a8613409c443b033d3a151b78ba1993c553</citedby><cites>FETCH-LOGICAL-c447t-d4c6950553662ffe9842a5329a9e35a8613409c443b033d3a151b78ba1993c553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16244905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skinner, J.S</creatorcontrib><creatorcontrib>Von Zitzewitz, J</creatorcontrib><creatorcontrib>Szucs, P</creatorcontrib><creatorcontrib>Marquez-Cedillo, L</creatorcontrib><creatorcontrib>Filichkin, T</creatorcontrib><creatorcontrib>Amundsen, K</creatorcontrib><creatorcontrib>Stockinger, E.J</creatorcontrib><creatorcontrib>Thomashow, M.F</creatorcontrib><creatorcontrib>Chen, T.H.H</creatorcontrib><creatorcontrib>Hayes, P.M</creatorcontrib><title>Structural, functional, and phylogenetic characterization of a large CBF gene family in barley</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><description>CBFs are key regulators in the Arabidopsis cold signaling pathway. We used Hordeum vulgare (barley), an important crop and a diploid Triticeae model, to characterize the CBF family from a low temperature tolerant cereal. We report that barley contains a large CBF family consisting of at least 20 genes (HvCBFs) comprising three multigene phylogenetic groupings designated the HvCBF1-, HvCBF3-, and HvCBF4-subgroups. For the HvCBF1- and HvCBF3-subgroups, there are comparable levels of phylogenetic diversity among rice, a cold-sensitive cereal, and the cold-hardy Triticeae. For the HvCBF4-subgroup, while similar diversity levels are observed in the Triticeae, only a single ancestral rice member was identified. The barley CBFs share many functional characteristics with dicot CBFs, including a general primary domain structure, transcript accumulation in response to cold, specific binding to the CRT motif, and the capacity to induce cor gene expression when ectopically expressed in Arabidopsis. Individual HvCBF genes differed in response to abiotic stress types and in the response time frame, suggesting different sets of HvCBF genes are employed relative to particular stresses. HvCBFs specifically bound monocot and dicot cor gene CRT elements in vitro under both warm and cold conditions; however, binding of HvCBF4-subgroup members was cold dependent. The temperature-independent HvCBFs activated cor gene expression at warm temperatures in transgenic Arabidopsis, while the cold-dependent HvCBF4-subgroup members of three Triticeae species did not. These results suggest that in the Triticeae - as in Arabidopsis - members of the CBF gene family function as fundamental components of the winter hardiness regulon.</description><subject>abiotic stress</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Barley</subject><subject>Base Sequence</subject><subject>binding sites</subject><subject>Cereal crops</subject><subject>Cold</subject><subject>cold tolerance</subject><subject>cor gene</subject><subject>CRT element</subject><subject>differential gene expression</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>Genes, Plant</subject><subject>Genetics</subject><subject>Genotype</subject><subject>Hordeum - genetics</subject><subject>Hordeum vulgare</subject><subject>Low temperature</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>multigene family</subject><subject>Multigene Family - genetics</subject><subject>nucleotide sequences</subject><subject>Oryza sativa</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>promoter regions</subject><subject>Rice</subject><subject>salt stress</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>transcription factors</subject><subject>transgenic plants</subject><subject>Triticeae</subject><subject>water stress</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1rFEEQhhtRzCb6A7xok4MnJ1b15_RRFxOFQA4xV5ua3p7NhNmZtXvmsP769LALghehoOrwvEVRD2PvEK4QwH7OiAiyAtCVUK6uxAu2Qm1lpUHUL9kK0NhKKRRn7DznJ4CSkuY1O0MjlHKgV-zX_ZTmMM2J-k-8nYcwdeOwzDRs-P7x0I_bOMSpCzw8UqIwxdT9oQXiY8uJ95S2ka-_XvOF4y3tuv7Au4E3lPp4eMNetdTn-PbUL9jD9bef6-_V7d3Nj_WX2yooZadqo4JxGrSWxoi2ja5WgrQUjlyUmmqDUoErrGxAyo0k1NjYuiF0ToYSu2Afj3v3afw9xzz5XZdD7Hsa4jhnb2qL0mrxXxCtAFOqgJf_gE_jnMprsrfGGWFcXRcIj1BIY84ptn6fuh2lg0fwiyJ_VOSLIr8o8ssF70-L52YXN38TJycF-HAEWho9bVOX_cO9AJRFn3ZKoHwGP1eS_w</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Skinner, J.S</creator><creator>Von Zitzewitz, J</creator><creator>Szucs, P</creator><creator>Marquez-Cedillo, L</creator><creator>Filichkin, T</creator><creator>Amundsen, K</creator><creator>Stockinger, E.J</creator><creator>Thomashow, M.F</creator><creator>Chen, T.H.H</creator><creator>Hayes, P.M</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Structural, functional, and phylogenetic characterization of a large CBF gene family in barley</title><author>Skinner, J.S ; Von Zitzewitz, J ; Szucs, P ; Marquez-Cedillo, L ; Filichkin, T ; Amundsen, K ; Stockinger, E.J ; Thomashow, M.F ; Chen, T.H.H ; Hayes, P.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-d4c6950553662ffe9842a5329a9e35a8613409c443b033d3a151b78ba1993c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>abiotic stress</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Barley</topic><topic>Base Sequence</topic><topic>binding sites</topic><topic>Cereal crops</topic><topic>Cold</topic><topic>cold tolerance</topic><topic>cor gene</topic><topic>CRT element</topic><topic>differential gene expression</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>Genes, Plant</topic><topic>Genetics</topic><topic>Genotype</topic><topic>Hordeum - genetics</topic><topic>Hordeum vulgare</topic><topic>Low temperature</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>multigene family</topic><topic>Multigene Family - genetics</topic><topic>nucleotide sequences</topic><topic>Oryza sativa</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>promoter regions</topic><topic>Rice</topic><topic>salt stress</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>transcription factors</topic><topic>transgenic plants</topic><topic>Triticeae</topic><topic>water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skinner, J.S</creatorcontrib><creatorcontrib>Von Zitzewitz, J</creatorcontrib><creatorcontrib>Szucs, P</creatorcontrib><creatorcontrib>Marquez-Cedillo, L</creatorcontrib><creatorcontrib>Filichkin, T</creatorcontrib><creatorcontrib>Amundsen, K</creatorcontrib><creatorcontrib>Stockinger, E.J</creatorcontrib><creatorcontrib>Thomashow, M.F</creatorcontrib><creatorcontrib>Chen, T.H.H</creatorcontrib><creatorcontrib>Hayes, P.M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skinner, J.S</au><au>Von Zitzewitz, J</au><au>Szucs, P</au><au>Marquez-Cedillo, L</au><au>Filichkin, T</au><au>Amundsen, K</au><au>Stockinger, E.J</au><au>Thomashow, M.F</au><au>Chen, T.H.H</au><au>Hayes, P.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, functional, and phylogenetic characterization of a large CBF gene family in barley</atitle><jtitle>Plant molecular biology</jtitle><addtitle>Plant Mol Biol</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>59</volume><issue>4</issue><spage>533</spage><epage>551</epage><pages>533-551</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>CBFs are key regulators in the Arabidopsis cold signaling pathway. We used Hordeum vulgare (barley), an important crop and a diploid Triticeae model, to characterize the CBF family from a low temperature tolerant cereal. We report that barley contains a large CBF family consisting of at least 20 genes (HvCBFs) comprising three multigene phylogenetic groupings designated the HvCBF1-, HvCBF3-, and HvCBF4-subgroups. For the HvCBF1- and HvCBF3-subgroups, there are comparable levels of phylogenetic diversity among rice, a cold-sensitive cereal, and the cold-hardy Triticeae. For the HvCBF4-subgroup, while similar diversity levels are observed in the Triticeae, only a single ancestral rice member was identified. The barley CBFs share many functional characteristics with dicot CBFs, including a general primary domain structure, transcript accumulation in response to cold, specific binding to the CRT motif, and the capacity to induce cor gene expression when ectopically expressed in Arabidopsis. Individual HvCBF genes differed in response to abiotic stress types and in the response time frame, suggesting different sets of HvCBF genes are employed relative to particular stresses. HvCBFs specifically bound monocot and dicot cor gene CRT elements in vitro under both warm and cold conditions; however, binding of HvCBF4-subgroup members was cold dependent. The temperature-independent HvCBFs activated cor gene expression at warm temperatures in transgenic Arabidopsis, while the cold-dependent HvCBF4-subgroup members of three Triticeae species did not. These results suggest that in the Triticeae - as in Arabidopsis - members of the CBF gene family function as fundamental components of the winter hardiness regulon.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>16244905</pmid><doi>10.1007/s11103-005-2498-2</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2005-11, Vol.59 (4), p.533-551
issn 0167-4412
1573-5028
language eng
recordid cdi_proquest_miscellaneous_68713752
source MEDLINE; SpringerNature Journals
subjects abiotic stress
Amino Acid Sequence
amino acid sequences
Arabidopsis
Arabidopsis - genetics
Arabidopsis thaliana
Barley
Base Sequence
binding sites
Cereal crops
Cold
cold tolerance
cor gene
CRT element
differential gene expression
Gene expression
Gene Expression Profiling
gene expression regulation
Gene Expression Regulation, Plant
genes
Genes, Plant
Genetics
Genotype
Hordeum - genetics
Hordeum vulgare
Low temperature
messenger RNA
Molecular Sequence Data
multigene family
Multigene Family - genetics
nucleotide sequences
Oryza sativa
Phylogeny
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified
promoter regions
Rice
salt stress
Sequence Homology, Amino Acid
Sequence Homology, Nucleic Acid
transcription factors
transgenic plants
Triticeae
water stress
title Structural, functional, and phylogenetic characterization of a large CBF gene family in barley
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T02%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20functional,%20and%20phylogenetic%20characterization%20of%20a%20large%20CBF%20gene%20family%20in%20barley&rft.jtitle=Plant%20molecular%20biology&rft.au=Skinner,%20J.S&rft.date=2005-11-01&rft.volume=59&rft.issue=4&rft.spage=533&rft.epage=551&rft.pages=533-551&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-005-2498-2&rft_dat=%3Cproquest_cross%3E17206206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=769626988&rft_id=info:pmid/16244905&rfr_iscdi=true