Clinical Applications of Whole-Blood PCR with Real-Time Instrumentation

As the genetic basis of many human diseases is being discovered, there is increasing need for the detection of single-nucleotide polymorphisms/mutations in medical laboratories. We describe an innovative approach that combines PCR amplification directly on whole blood and real-time detection PCR tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry (Baltimore, Md.) Md.), 2005-11, Vol.51 (11), p.2025-2030
Hauptverfasser: Castley, Alison, Higgins, Melinda, Ivey, John, Mamotte, Cyril, Sayer, David C, Christiansen, Frank T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2030
container_issue 11
container_start_page 2025
container_title Clinical chemistry (Baltimore, Md.)
container_volume 51
creator Castley, Alison
Higgins, Melinda
Ivey, John
Mamotte, Cyril
Sayer, David C
Christiansen, Frank T
description As the genetic basis of many human diseases is being discovered, there is increasing need for the detection of single-nucleotide polymorphisms/mutations in medical laboratories. We describe an innovative approach that combines PCR amplification directly on whole blood and real-time detection PCR technology (WB-RTD PCR). We compared WB-RTD PCR with the method for extracted DNA-RTD PCR for the detection of mutations in the prothrombin (n = 94), factor V Leiden (n = 49), and hemochromatosis (n = 22) genes. Mutation detection on the Roche LightCycler was based on use of fluorescence resonance energy transfer (FRET) probes and melting curve analysis. We also compared the WB-RTD PCR on the LightCycler and the ABI Prismtrade mark 7700 sequence detection system with minor groove- binding nonfluorescent quencher probes. We obtained complete concordance between both methods in assigning genotypes. We also demonstrated that the WB-RTD PCR method can be performed on real-time PCR instruments from Applied Biosystems and the LightCycler. Omission of the need for DNA extraction and gel electrophoresis allowed substantial labor and cost savings with this method. This approach has applications for testing other medically relevant single-nucleotide polymorphisms.
doi_str_mv 10.1373/clinchem.2005.055327
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68712119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17392248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-5bb168b83edc9cf6d88742c62ad643e087fe1447c4de42ca8eade1363e1d06653</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModlv9BiKDYH2abW7-z2Ndai0ULKXiY8hm7jgpmZl1MsPQb2_WXSn4IgSSG37nXO49hLwDugau-YWPofctdmtGqVxTKTnTL8gKJKelkQpekhWltCorEPqEnKb0mEuhjXpNTkCBysesyPUm2wTvYnG528X8mMLQp2Joih_tELH8HIehLu4298USpra4RxfLh9BhcdOnaZw77Kc_kjfkVeNiwrfH-4x8_3L1sPla3n67vtlc3pZeMDmVcrvNbbeGY-0r36jaGC2YV8zVSnCkRjcIQmgvasz_zqCrEbjiCDVVSvIzcn7w3Y3DrxnTZLuQPMboehzmZJXRwACq_4KgecWYMBn88A_4OMxjn4ewDASlwOXeTRwgPw4pjdjY3Rg6Nz5ZoHYfh_0bh93HYQ9xZNn7o_e87bB-Fh33n4GPR8ClHEIzut6H9MxpBpUye-7TgWvDz3YJI9rUuRizLdhlWSRYgNyZSf4bK4uhAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214001359</pqid></control><display><type>article</type><title>Clinical Applications of Whole-Blood PCR with Real-Time Instrumentation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Castley, Alison ; Higgins, Melinda ; Ivey, John ; Mamotte, Cyril ; Sayer, David C ; Christiansen, Frank T</creator><creatorcontrib>Castley, Alison ; Higgins, Melinda ; Ivey, John ; Mamotte, Cyril ; Sayer, David C ; Christiansen, Frank T</creatorcontrib><description>As the genetic basis of many human diseases is being discovered, there is increasing need for the detection of single-nucleotide polymorphisms/mutations in medical laboratories. We describe an innovative approach that combines PCR amplification directly on whole blood and real-time detection PCR technology (WB-RTD PCR). We compared WB-RTD PCR with the method for extracted DNA-RTD PCR for the detection of mutations in the prothrombin (n = 94), factor V Leiden (n = 49), and hemochromatosis (n = 22) genes. Mutation detection on the Roche LightCycler was based on use of fluorescence resonance energy transfer (FRET) probes and melting curve analysis. We also compared the WB-RTD PCR on the LightCycler and the ABI Prismtrade mark 7700 sequence detection system with minor groove- binding nonfluorescent quencher probes. We obtained complete concordance between both methods in assigning genotypes. We also demonstrated that the WB-RTD PCR method can be performed on real-time PCR instruments from Applied Biosystems and the LightCycler. Omission of the need for DNA extraction and gel electrophoresis allowed substantial labor and cost savings with this method. This approach has applications for testing other medically relevant single-nucleotide polymorphisms.</description><identifier>ISSN: 0009-9147</identifier><identifier>EISSN: 1530-8561</identifier><identifier>DOI: 10.1373/clinchem.2005.055327</identifier><identifier>PMID: 16166168</identifier><identifier>CODEN: CLCHAU</identifier><language>eng</language><publisher>Washington, DC: Am Assoc Clin Chem</publisher><subject>Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Blood ; Blood Specimen Collection ; Deoxyribonucleic acid ; DNA ; DNA polymerase ; Energy transfer ; Factor V - genetics ; Fluorescence Resonance Energy Transfer ; Fundamental and applied biological sciences. Psychology ; Genotype ; Genotypes ; Hemochromatosis Protein ; Histocompatibility Antigens Class I - genetics ; Humans ; Instrumentation ; Investigative techniques, diagnostic techniques (general aspects) ; Medical laboratories ; Medical sciences ; Membrane Proteins - genetics ; Methods ; Mutation ; Polymerase Chain Reaction - instrumentation ; Polymerase Chain Reaction - methods ; Probes ; Prothrombin - genetics ; Temperature</subject><ispartof>Clinical chemistry (Baltimore, Md.), 2005-11, Vol.51 (11), p.2025-2030</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright American Association for Clinical Chemistry Nov 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-5bb168b83edc9cf6d88742c62ad643e087fe1447c4de42ca8eade1363e1d06653</citedby><cites>FETCH-LOGICAL-c425t-5bb168b83edc9cf6d88742c62ad643e087fe1447c4de42ca8eade1363e1d06653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17219688$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16166168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castley, Alison</creatorcontrib><creatorcontrib>Higgins, Melinda</creatorcontrib><creatorcontrib>Ivey, John</creatorcontrib><creatorcontrib>Mamotte, Cyril</creatorcontrib><creatorcontrib>Sayer, David C</creatorcontrib><creatorcontrib>Christiansen, Frank T</creatorcontrib><title>Clinical Applications of Whole-Blood PCR with Real-Time Instrumentation</title><title>Clinical chemistry (Baltimore, Md.)</title><addtitle>Clin Chem</addtitle><description>As the genetic basis of many human diseases is being discovered, there is increasing need for the detection of single-nucleotide polymorphisms/mutations in medical laboratories. We describe an innovative approach that combines PCR amplification directly on whole blood and real-time detection PCR technology (WB-RTD PCR). We compared WB-RTD PCR with the method for extracted DNA-RTD PCR for the detection of mutations in the prothrombin (n = 94), factor V Leiden (n = 49), and hemochromatosis (n = 22) genes. Mutation detection on the Roche LightCycler was based on use of fluorescence resonance energy transfer (FRET) probes and melting curve analysis. We also compared the WB-RTD PCR on the LightCycler and the ABI Prismtrade mark 7700 sequence detection system with minor groove- binding nonfluorescent quencher probes. We obtained complete concordance between both methods in assigning genotypes. We also demonstrated that the WB-RTD PCR method can be performed on real-time PCR instruments from Applied Biosystems and the LightCycler. Omission of the need for DNA extraction and gel electrophoresis allowed substantial labor and cost savings with this method. This approach has applications for testing other medically relevant single-nucleotide polymorphisms.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Blood</subject><subject>Blood Specimen Collection</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>Energy transfer</subject><subject>Factor V - genetics</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Hemochromatosis Protein</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>Humans</subject><subject>Instrumentation</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical laboratories</subject><subject>Medical sciences</subject><subject>Membrane Proteins - genetics</subject><subject>Methods</subject><subject>Mutation</subject><subject>Polymerase Chain Reaction - instrumentation</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Probes</subject><subject>Prothrombin - genetics</subject><subject>Temperature</subject><issn>0009-9147</issn><issn>1530-8561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkV9rFDEUxYModlv9BiKDYH2abW7-z2Ndai0ULKXiY8hm7jgpmZl1MsPQb2_WXSn4IgSSG37nXO49hLwDugau-YWPofctdmtGqVxTKTnTL8gKJKelkQpekhWltCorEPqEnKb0mEuhjXpNTkCBysesyPUm2wTvYnG528X8mMLQp2Joih_tELH8HIehLu4298USpra4RxfLh9BhcdOnaZw77Kc_kjfkVeNiwrfH-4x8_3L1sPla3n67vtlc3pZeMDmVcrvNbbeGY-0r36jaGC2YV8zVSnCkRjcIQmgvasz_zqCrEbjiCDVVSvIzcn7w3Y3DrxnTZLuQPMboehzmZJXRwACq_4KgecWYMBn88A_4OMxjn4ewDASlwOXeTRwgPw4pjdjY3Rg6Nz5ZoHYfh_0bh93HYQ9xZNn7o_e87bB-Fh33n4GPR8ClHEIzut6H9MxpBpUye-7TgWvDz3YJI9rUuRizLdhlWSRYgNyZSf4bK4uhAg</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Castley, Alison</creator><creator>Higgins, Melinda</creator><creator>Ivey, John</creator><creator>Mamotte, Cyril</creator><creator>Sayer, David C</creator><creator>Christiansen, Frank T</creator><general>Am Assoc Clin Chem</general><general>American Association for Clinical Chemistry</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4U-</scope><scope>7QO</scope><scope>7RV</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Clinical Applications of Whole-Blood PCR with Real-Time Instrumentation</title><author>Castley, Alison ; Higgins, Melinda ; Ivey, John ; Mamotte, Cyril ; Sayer, David C ; Christiansen, Frank T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-5bb168b83edc9cf6d88742c62ad643e087fe1447c4de42ca8eade1363e1d06653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Blood</topic><topic>Blood Specimen Collection</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>Energy transfer</topic><topic>Factor V - genetics</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Hemochromatosis Protein</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>Humans</topic><topic>Instrumentation</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical laboratories</topic><topic>Medical sciences</topic><topic>Membrane Proteins - genetics</topic><topic>Methods</topic><topic>Mutation</topic><topic>Polymerase Chain Reaction - instrumentation</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Probes</topic><topic>Prothrombin - genetics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castley, Alison</creatorcontrib><creatorcontrib>Higgins, Melinda</creatorcontrib><creatorcontrib>Ivey, John</creatorcontrib><creatorcontrib>Mamotte, Cyril</creatorcontrib><creatorcontrib>Sayer, David C</creatorcontrib><creatorcontrib>Christiansen, Frank T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castley, Alison</au><au>Higgins, Melinda</au><au>Ivey, John</au><au>Mamotte, Cyril</au><au>Sayer, David C</au><au>Christiansen, Frank T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical Applications of Whole-Blood PCR with Real-Time Instrumentation</atitle><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle><addtitle>Clin Chem</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>51</volume><issue>11</issue><spage>2025</spage><epage>2030</epage><pages>2025-2030</pages><issn>0009-9147</issn><eissn>1530-8561</eissn><coden>CLCHAU</coden><abstract>As the genetic basis of many human diseases is being discovered, there is increasing need for the detection of single-nucleotide polymorphisms/mutations in medical laboratories. We describe an innovative approach that combines PCR amplification directly on whole blood and real-time detection PCR technology (WB-RTD PCR). We compared WB-RTD PCR with the method for extracted DNA-RTD PCR for the detection of mutations in the prothrombin (n = 94), factor V Leiden (n = 49), and hemochromatosis (n = 22) genes. Mutation detection on the Roche LightCycler was based on use of fluorescence resonance energy transfer (FRET) probes and melting curve analysis. We also compared the WB-RTD PCR on the LightCycler and the ABI Prismtrade mark 7700 sequence detection system with minor groove- binding nonfluorescent quencher probes. We obtained complete concordance between both methods in assigning genotypes. We also demonstrated that the WB-RTD PCR method can be performed on real-time PCR instruments from Applied Biosystems and the LightCycler. Omission of the need for DNA extraction and gel electrophoresis allowed substantial labor and cost savings with this method. This approach has applications for testing other medically relevant single-nucleotide polymorphisms.</abstract><cop>Washington, DC</cop><pub>Am Assoc Clin Chem</pub><pmid>16166168</pmid><doi>10.1373/clinchem.2005.055327</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-9147
ispartof Clinical chemistry (Baltimore, Md.), 2005-11, Vol.51 (11), p.2025-2030
issn 0009-9147
1530-8561
language eng
recordid cdi_proquest_miscellaneous_68712119
source Oxford University Press Journals All Titles (1996-Current); MEDLINE
subjects Analytical, structural and metabolic biochemistry
Biological and medical sciences
Blood
Blood Specimen Collection
Deoxyribonucleic acid
DNA
DNA polymerase
Energy transfer
Factor V - genetics
Fluorescence Resonance Energy Transfer
Fundamental and applied biological sciences. Psychology
Genotype
Genotypes
Hemochromatosis Protein
Histocompatibility Antigens Class I - genetics
Humans
Instrumentation
Investigative techniques, diagnostic techniques (general aspects)
Medical laboratories
Medical sciences
Membrane Proteins - genetics
Methods
Mutation
Polymerase Chain Reaction - instrumentation
Polymerase Chain Reaction - methods
Probes
Prothrombin - genetics
Temperature
title Clinical Applications of Whole-Blood PCR with Real-Time Instrumentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20Applications%20of%20Whole-Blood%20PCR%20with%20Real-Time%20Instrumentation&rft.jtitle=Clinical%20chemistry%20(Baltimore,%20Md.)&rft.au=Castley,%20Alison&rft.date=2005-11-01&rft.volume=51&rft.issue=11&rft.spage=2025&rft.epage=2030&rft.pages=2025-2030&rft.issn=0009-9147&rft.eissn=1530-8561&rft.coden=CLCHAU&rft_id=info:doi/10.1373/clinchem.2005.055327&rft_dat=%3Cproquest_cross%3E17392248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214001359&rft_id=info:pmid/16166168&rfr_iscdi=true