Maximization of mutual information for offline Thai handwriting recognition
This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their clas...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2006-08, Vol.28 (8), p.1347-1351 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1351 |
---|---|
container_issue | 8 |
container_start_page | 1347 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 28 |
creator | Nopsuwanchai, R. Biem, A. Clocksin, W.F. |
description | This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their classes. The feature extraction is based on our proposed block-based PCA and composite images, shown to be better at discriminating Thai confusable characters. We demonstrate significant improvements in recognition accuracies compared to the classifiers that are not discriminatively optimized |
doi_str_mv | 10.1109/TPAMI.2006.167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_68710915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1642668</ieee_id><sourcerecordid>28053766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-4a2015e09aa2612868cf963063a4e76a7d18ff664efa76560f05b9e9203758ff3</originalsourceid><addsrcrecordid>eNqF0c1vFCEYBnBiNHatXr2YmImJepr1BYYXODaNH41t9LCeydtZaGlmmAoz8eOvl3U3qfGgJwj8eAI8jD3lsOYc7JvN55OLs7UAwDVHfY-tuJW2lUra-2wFHEVrjDBH7FEpNwC8UyAfsiOOxqBBu2IfL-h7HONPmuOUmik04zIvNDQxhSmP-9U6qzthiMk3m2uKzTWl7bcc55iumuz76SrFHXzMHgQain9yGI_Zl3dvN6cf2vNP789OT87bvpNybjsSwJUHSySQi3qRPliUgJI6r5H0lpsQEDsfSKNCCKAurbcCpFZ1Rx6z1_vc2zx9XXyZ3RhL74eBkp-W4oxFIQQYXeWrf0o0un4iV_-FwoCSGrHCF3_Bm2nJqT7XGVRadiB2aes96vNUSvbB3eY4Uv7hOLhdbe53bW5Xm6u11QPPD6nL5ei3d_zQUwUvD4BKT0PIlPpY7py2UnFuqnu2d9F7_0dMJxCN_AXJ26cz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865734025</pqid></control><display><type>article</type><title>Maximization of mutual information for offline Thai handwriting recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Nopsuwanchai, R. ; Biem, A. ; Clocksin, W.F.</creator><creatorcontrib>Nopsuwanchai, R. ; Biem, A. ; Clocksin, W.F.</creatorcontrib><description>This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their classes. The feature extraction is based on our proposed block-based PCA and composite images, shown to be better at discriminating Thai confusable characters. We demonstrate significant improvements in recognition accuracies compared to the classifiers that are not discriminatively optimized</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2006.167</identifier><identifier>PMID: 16886869</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Automatic Data Processing - methods ; Blocking ; Character recognition ; Clocks ; Computer science; control theory; systems ; Computer Simulation ; discriminative training ; Documentation - methods ; Exact sciences and technology ; Feature extraction ; Handwriting ; Handwriting recognition ; Hidden Markov Model ; Hidden Markov models ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Information Storage and Retrieval - methods ; Intelligence ; Likelihood Functions ; Maximization ; Maximum likelihood estimation ; Models, Statistical ; Mutual information ; Online Systems ; Optical character recognition software ; Optimization methods ; Pattern analysis ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; PCA ; Principal component analysis ; Thai handwriting recognition ; Thailand ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-08, Vol.28 (8), p.1347-1351</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-4a2015e09aa2612868cf963063a4e76a7d18ff664efa76560f05b9e9203758ff3</citedby><cites>FETCH-LOGICAL-c433t-4a2015e09aa2612868cf963063a4e76a7d18ff664efa76560f05b9e9203758ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1642668$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1642668$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17935118$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16886869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nopsuwanchai, R.</creatorcontrib><creatorcontrib>Biem, A.</creatorcontrib><creatorcontrib>Clocksin, W.F.</creatorcontrib><title>Maximization of mutual information for offline Thai handwriting recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their classes. The feature extraction is based on our proposed block-based PCA and composite images, shown to be better at discriminating Thai confusable characters. We demonstrate significant improvements in recognition accuracies compared to the classifiers that are not discriminatively optimized</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Automatic Data Processing - methods</subject><subject>Blocking</subject><subject>Character recognition</subject><subject>Clocks</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>discriminative training</subject><subject>Documentation - methods</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Handwriting</subject><subject>Handwriting recognition</subject><subject>Hidden Markov Model</subject><subject>Hidden Markov models</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Intelligence</subject><subject>Likelihood Functions</subject><subject>Maximization</subject><subject>Maximum likelihood estimation</subject><subject>Models, Statistical</subject><subject>Mutual information</subject><subject>Online Systems</subject><subject>Optical character recognition software</subject><subject>Optimization methods</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>PCA</subject><subject>Principal component analysis</subject><subject>Thai handwriting recognition</subject><subject>Thailand</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c1vFCEYBnBiNHatXr2YmImJepr1BYYXODaNH41t9LCeydtZaGlmmAoz8eOvl3U3qfGgJwj8eAI8jD3lsOYc7JvN55OLs7UAwDVHfY-tuJW2lUra-2wFHEVrjDBH7FEpNwC8UyAfsiOOxqBBu2IfL-h7HONPmuOUmik04zIvNDQxhSmP-9U6qzthiMk3m2uKzTWl7bcc55iumuz76SrFHXzMHgQain9yGI_Zl3dvN6cf2vNP789OT87bvpNybjsSwJUHSySQi3qRPliUgJI6r5H0lpsQEDsfSKNCCKAurbcCpFZ1Rx6z1_vc2zx9XXyZ3RhL74eBkp-W4oxFIQQYXeWrf0o0un4iV_-FwoCSGrHCF3_Bm2nJqT7XGVRadiB2aes96vNUSvbB3eY4Uv7hOLhdbe53bW5Xm6u11QPPD6nL5ei3d_zQUwUvD4BKT0PIlPpY7py2UnFuqnu2d9F7_0dMJxCN_AXJ26cz</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Nopsuwanchai, R.</creator><creator>Biem, A.</creator><creator>Clocksin, W.F.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060801</creationdate><title>Maximization of mutual information for offline Thai handwriting recognition</title><author>Nopsuwanchai, R. ; Biem, A. ; Clocksin, W.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-4a2015e09aa2612868cf963063a4e76a7d18ff664efa76560f05b9e9203758ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Automatic Data Processing - methods</topic><topic>Blocking</topic><topic>Character recognition</topic><topic>Clocks</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>discriminative training</topic><topic>Documentation - methods</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Handwriting</topic><topic>Handwriting recognition</topic><topic>Hidden Markov Model</topic><topic>Hidden Markov models</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Intelligence</topic><topic>Likelihood Functions</topic><topic>Maximization</topic><topic>Maximum likelihood estimation</topic><topic>Models, Statistical</topic><topic>Mutual information</topic><topic>Online Systems</topic><topic>Optical character recognition software</topic><topic>Optimization methods</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>PCA</topic><topic>Principal component analysis</topic><topic>Thai handwriting recognition</topic><topic>Thailand</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nopsuwanchai, R.</creatorcontrib><creatorcontrib>Biem, A.</creatorcontrib><creatorcontrib>Clocksin, W.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nopsuwanchai, R.</au><au>Biem, A.</au><au>Clocksin, W.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximization of mutual information for offline Thai handwriting recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>28</volume><issue>8</issue><spage>1347</spage><epage>1351</epage><pages>1347-1351</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their classes. The feature extraction is based on our proposed block-based PCA and composite images, shown to be better at discriminating Thai confusable characters. We demonstrate significant improvements in recognition accuracies compared to the classifiers that are not discriminatively optimized</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>16886869</pmid><doi>10.1109/TPAMI.2006.167</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2006-08, Vol.28 (8), p.1347-1351 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_miscellaneous_68710915 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Artificial Intelligence Automatic Data Processing - methods Blocking Character recognition Clocks Computer science control theory systems Computer Simulation discriminative training Documentation - methods Exact sciences and technology Feature extraction Handwriting Handwriting recognition Hidden Markov Model Hidden Markov models Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Information Storage and Retrieval - methods Intelligence Likelihood Functions Maximization Maximum likelihood estimation Models, Statistical Mutual information Online Systems Optical character recognition software Optimization methods Pattern analysis Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry PCA Principal component analysis Thai handwriting recognition Thailand Training |
title | Maximization of mutual information for offline Thai handwriting recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximization%20of%20mutual%20information%20for%20offline%20Thai%20handwriting%20recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Nopsuwanchai,%20R.&rft.date=2006-08-01&rft.volume=28&rft.issue=8&rft.spage=1347&rft.epage=1351&rft.pages=1347-1351&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.167&rft_dat=%3Cproquest_RIE%3E28053766%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865734025&rft_id=info:pmid/16886869&rft_ieee_id=1642668&rfr_iscdi=true |