Maximization of mutual information for offline Thai handwriting recognition

This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2006-08, Vol.28 (8), p.1347-1351
Hauptverfasser: Nopsuwanchai, R., Biem, A., Clocksin, W.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1351
container_issue 8
container_start_page 1347
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 28
creator Nopsuwanchai, R.
Biem, A.
Clocksin, W.F.
description This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their classes. The feature extraction is based on our proposed block-based PCA and composite images, shown to be better at discriminating Thai confusable characters. We demonstrate significant improvements in recognition accuracies compared to the classifiers that are not discriminatively optimized
doi_str_mv 10.1109/TPAMI.2006.167
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_68710915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1642668</ieee_id><sourcerecordid>28053766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-4a2015e09aa2612868cf963063a4e76a7d18ff664efa76560f05b9e9203758ff3</originalsourceid><addsrcrecordid>eNqF0c1vFCEYBnBiNHatXr2YmImJepr1BYYXODaNH41t9LCeydtZaGlmmAoz8eOvl3U3qfGgJwj8eAI8jD3lsOYc7JvN55OLs7UAwDVHfY-tuJW2lUra-2wFHEVrjDBH7FEpNwC8UyAfsiOOxqBBu2IfL-h7HONPmuOUmik04zIvNDQxhSmP-9U6qzthiMk3m2uKzTWl7bcc55iumuz76SrFHXzMHgQain9yGI_Zl3dvN6cf2vNP789OT87bvpNybjsSwJUHSySQi3qRPliUgJI6r5H0lpsQEDsfSKNCCKAurbcCpFZ1Rx6z1_vc2zx9XXyZ3RhL74eBkp-W4oxFIQQYXeWrf0o0un4iV_-FwoCSGrHCF3_Bm2nJqT7XGVRadiB2aes96vNUSvbB3eY4Uv7hOLhdbe53bW5Xm6u11QPPD6nL5ei3d_zQUwUvD4BKT0PIlPpY7py2UnFuqnu2d9F7_0dMJxCN_AXJ26cz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865734025</pqid></control><display><type>article</type><title>Maximization of mutual information for offline Thai handwriting recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Nopsuwanchai, R. ; Biem, A. ; Clocksin, W.F.</creator><creatorcontrib>Nopsuwanchai, R. ; Biem, A. ; Clocksin, W.F.</creatorcontrib><description>This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their classes. The feature extraction is based on our proposed block-based PCA and composite images, shown to be better at discriminating Thai confusable characters. We demonstrate significant improvements in recognition accuracies compared to the classifiers that are not discriminatively optimized</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2006.167</identifier><identifier>PMID: 16886869</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Automatic Data Processing - methods ; Blocking ; Character recognition ; Clocks ; Computer science; control theory; systems ; Computer Simulation ; discriminative training ; Documentation - methods ; Exact sciences and technology ; Feature extraction ; Handwriting ; Handwriting recognition ; Hidden Markov Model ; Hidden Markov models ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Information Storage and Retrieval - methods ; Intelligence ; Likelihood Functions ; Maximization ; Maximum likelihood estimation ; Models, Statistical ; Mutual information ; Online Systems ; Optical character recognition software ; Optimization methods ; Pattern analysis ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; PCA ; Principal component analysis ; Thai handwriting recognition ; Thailand ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-08, Vol.28 (8), p.1347-1351</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-4a2015e09aa2612868cf963063a4e76a7d18ff664efa76560f05b9e9203758ff3</citedby><cites>FETCH-LOGICAL-c433t-4a2015e09aa2612868cf963063a4e76a7d18ff664efa76560f05b9e9203758ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1642668$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1642668$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17935118$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16886869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nopsuwanchai, R.</creatorcontrib><creatorcontrib>Biem, A.</creatorcontrib><creatorcontrib>Clocksin, W.F.</creatorcontrib><title>Maximization of mutual information for offline Thai handwriting recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their classes. The feature extraction is based on our proposed block-based PCA and composite images, shown to be better at discriminating Thai confusable characters. We demonstrate significant improvements in recognition accuracies compared to the classifiers that are not discriminatively optimized</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Automatic Data Processing - methods</subject><subject>Blocking</subject><subject>Character recognition</subject><subject>Clocks</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>discriminative training</subject><subject>Documentation - methods</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Handwriting</subject><subject>Handwriting recognition</subject><subject>Hidden Markov Model</subject><subject>Hidden Markov models</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Intelligence</subject><subject>Likelihood Functions</subject><subject>Maximization</subject><subject>Maximum likelihood estimation</subject><subject>Models, Statistical</subject><subject>Mutual information</subject><subject>Online Systems</subject><subject>Optical character recognition software</subject><subject>Optimization methods</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>PCA</subject><subject>Principal component analysis</subject><subject>Thai handwriting recognition</subject><subject>Thailand</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c1vFCEYBnBiNHatXr2YmImJepr1BYYXODaNH41t9LCeydtZaGlmmAoz8eOvl3U3qfGgJwj8eAI8jD3lsOYc7JvN55OLs7UAwDVHfY-tuJW2lUra-2wFHEVrjDBH7FEpNwC8UyAfsiOOxqBBu2IfL-h7HONPmuOUmik04zIvNDQxhSmP-9U6qzthiMk3m2uKzTWl7bcc55iumuz76SrFHXzMHgQain9yGI_Zl3dvN6cf2vNP789OT87bvpNybjsSwJUHSySQi3qRPliUgJI6r5H0lpsQEDsfSKNCCKAurbcCpFZ1Rx6z1_vc2zx9XXyZ3RhL74eBkp-W4oxFIQQYXeWrf0o0un4iV_-FwoCSGrHCF3_Bm2nJqT7XGVRadiB2aes96vNUSvbB3eY4Uv7hOLhdbe53bW5Xm6u11QPPD6nL5ei3d_zQUwUvD4BKT0PIlPpY7py2UnFuqnu2d9F7_0dMJxCN_AXJ26cz</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Nopsuwanchai, R.</creator><creator>Biem, A.</creator><creator>Clocksin, W.F.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060801</creationdate><title>Maximization of mutual information for offline Thai handwriting recognition</title><author>Nopsuwanchai, R. ; Biem, A. ; Clocksin, W.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-4a2015e09aa2612868cf963063a4e76a7d18ff664efa76560f05b9e9203758ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Automatic Data Processing - methods</topic><topic>Blocking</topic><topic>Character recognition</topic><topic>Clocks</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>discriminative training</topic><topic>Documentation - methods</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Handwriting</topic><topic>Handwriting recognition</topic><topic>Hidden Markov Model</topic><topic>Hidden Markov models</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Intelligence</topic><topic>Likelihood Functions</topic><topic>Maximization</topic><topic>Maximum likelihood estimation</topic><topic>Models, Statistical</topic><topic>Mutual information</topic><topic>Online Systems</topic><topic>Optical character recognition software</topic><topic>Optimization methods</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>PCA</topic><topic>Principal component analysis</topic><topic>Thai handwriting recognition</topic><topic>Thailand</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nopsuwanchai, R.</creatorcontrib><creatorcontrib>Biem, A.</creatorcontrib><creatorcontrib>Clocksin, W.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nopsuwanchai, R.</au><au>Biem, A.</au><au>Clocksin, W.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximization of mutual information for offline Thai handwriting recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>28</volume><issue>8</issue><spage>1347</spage><epage>1351</epage><pages>1347-1351</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper aims to improve the performance of an HMM-based offline Thai handwriting recognition system through discriminative training and the use of fine-tuned feature extraction methods. The discriminative training is implemented by maximizing the mutual information between the data and their classes. The feature extraction is based on our proposed block-based PCA and composite images, shown to be better at discriminating Thai confusable characters. We demonstrate significant improvements in recognition accuracies compared to the classifiers that are not discriminatively optimized</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>16886869</pmid><doi>10.1109/TPAMI.2006.167</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2006-08, Vol.28 (8), p.1347-1351
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_68710915
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial Intelligence
Automatic Data Processing - methods
Blocking
Character recognition
Clocks
Computer science
control theory
systems
Computer Simulation
discriminative training
Documentation - methods
Exact sciences and technology
Feature extraction
Handwriting
Handwriting recognition
Hidden Markov Model
Hidden Markov models
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
Intelligence
Likelihood Functions
Maximization
Maximum likelihood estimation
Models, Statistical
Mutual information
Online Systems
Optical character recognition software
Optimization methods
Pattern analysis
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
PCA
Principal component analysis
Thai handwriting recognition
Thailand
Training
title Maximization of mutual information for offline Thai handwriting recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximization%20of%20mutual%20information%20for%20offline%20Thai%20handwriting%20recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Nopsuwanchai,%20R.&rft.date=2006-08-01&rft.volume=28&rft.issue=8&rft.spage=1347&rft.epage=1351&rft.pages=1347-1351&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.167&rft_dat=%3Cproquest_RIE%3E28053766%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865734025&rft_id=info:pmid/16886869&rft_ieee_id=1642668&rfr_iscdi=true