Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability
Long-term exposure of the skin to UV light causes degenerative effects, which can be minimized by using antioxidant formulations. The major challenge in this regard is that a significant amount of antioxidant should reach at the site for effective photoprotection. However, barrier properties of the...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2006-08, Vol.320 (1), p.37-44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | International journal of pharmaceutics |
container_volume | 320 |
creator | Padamwar, Mahesh N. Pokharkar, Varsha B. |
description | Long-term exposure of the skin to UV light causes degenerative effects, which can be minimized by using antioxidant formulations. The major challenge in this regard is that a significant amount of antioxidant should reach at the site for effective photoprotection. However, barrier properties of the skin limit their use. In the present study, Vitamin E acetate was encapsulated into liposome for improving its topical delivery. However preparation of liposomes is very difficult due to number of formulation variables involved therein. In the present work systematic statistical study for the formulation of liposomes for topical delivery of Vitamin E using the factorial design approach was undertaken. Amount of phospholipid (PL) and cholesterol (CH) were taken at three different levels and liposomes were prepared using ethanol injection method. Liposomes were characterized for encapsulation efficiency, vesicle size, zeta potential, and drug deposition in the rat skin. Gels containing liposomal dispersion (batch with higher skin deposition of VE) were prepared in Carbopol
® 980 NF and were characterized for gel strength, viscosity and drug deposition in the rat skin. Stability of liposome dispersion and gel formulation was studied at 30
°C/65% RH for 3 months. Results of regression analysis revealed that vesicle size and drug deposition in the rat skin were dependant on the lipid concentration and lipid:drug ratio. Drug deposition in rat skin had an inverse relationship with respect to PL and CH concentration. Prepared liposomal dispersion (50
mg PL:6
mg CH) showed seven-fold increase in drug deposition compared to control (plain drug dispersion). Gel formulation demonstrated six-fold and four-fold increase in drug deposition compared to control gel and marketed cream, respectively. Liposome dispersion and gel formulation were found to be stable for 3 months. Factorial design was found to be well suited to identify the key variables affecting drug deposition. Improved drug deposition from liposomal preparations demonstrates its potential for dermal delivery. |
doi_str_mv | 10.1016/j.ijpharm.2006.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68710736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517306002894</els_id><sourcerecordid>68710736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-b8f91d013c6d1592a5480ada2783960ee2c83e75c9cd50c161fa5592ea681ca23</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhJ4B8gVuCHSe2wwVVLV9SJS5wtmbtydarJA62s1L59bhspB57suV5Xs9oHkLeclZzxuXHY-2Pyx3EqW4YkzVra8b4M7LjWolKtEo-JzsmlK46rsQFeZXSkRWw4eIlueBSMdUItSN_b_CEY1gmnDMNAz35DJOf6RjAoaM5LN7CSEe_hBSmchtCnNYRsg8zXZOfD3QAm0P0peYw-cNMYVliAHv3id7E9VBeS9b_D8DsaMqw96PP96_JiwHGhG-285L8_vrl1_X36vbntx_XV7eVbZs2V3s99NwxLqx0vOsb6FrNwEGjtOglQ2ysFqg621vXMcslH6ArHILU3EIjLsmH879lqj8rpmwmnyyOI8wY1mSkVpwpIZ8Eed92mne6gN0ZtDGkFHEwS_QTxHvDmXmwY45ms2Me7BjWmmKn5N5tDdb9hO4xtekowPsNgFTWPkSYrU-PnGaN6nlXuM9nDsveTh6jSdbjbNH5iDYbF_wTo_wDYBOypA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19458158</pqid></control><display><type>article</type><title>Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Padamwar, Mahesh N. ; Pokharkar, Varsha B.</creator><creatorcontrib>Padamwar, Mahesh N. ; Pokharkar, Varsha B.</creatorcontrib><description>Long-term exposure of the skin to UV light causes degenerative effects, which can be minimized by using antioxidant formulations. The major challenge in this regard is that a significant amount of antioxidant should reach at the site for effective photoprotection. However, barrier properties of the skin limit their use. In the present study, Vitamin E acetate was encapsulated into liposome for improving its topical delivery. However preparation of liposomes is very difficult due to number of formulation variables involved therein. In the present work systematic statistical study for the formulation of liposomes for topical delivery of Vitamin E using the factorial design approach was undertaken. Amount of phospholipid (PL) and cholesterol (CH) were taken at three different levels and liposomes were prepared using ethanol injection method. Liposomes were characterized for encapsulation efficiency, vesicle size, zeta potential, and drug deposition in the rat skin. Gels containing liposomal dispersion (batch with higher skin deposition of VE) were prepared in Carbopol
® 980 NF and were characterized for gel strength, viscosity and drug deposition in the rat skin. Stability of liposome dispersion and gel formulation was studied at 30
°C/65% RH for 3 months. Results of regression analysis revealed that vesicle size and drug deposition in the rat skin were dependant on the lipid concentration and lipid:drug ratio. Drug deposition in rat skin had an inverse relationship with respect to PL and CH concentration. Prepared liposomal dispersion (50
mg PL:6
mg CH) showed seven-fold increase in drug deposition compared to control (plain drug dispersion). Gel formulation demonstrated six-fold and four-fold increase in drug deposition compared to control gel and marketed cream, respectively. Liposome dispersion and gel formulation were found to be stable for 3 months. Factorial design was found to be well suited to identify the key variables affecting drug deposition. Improved drug deposition from liposomal preparations demonstrates its potential for dermal delivery.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2006.04.001</identifier><identifier>PMID: 16707237</identifier><identifier>CODEN: IJPHDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acrylic Resins - chemistry ; Administration, Topical ; Animals ; Antioxidants - administration & dosage ; Antioxidants - chemistry ; Antioxidants - metabolism ; Biological and medical sciences ; Chemistry, Pharmaceutical ; Cholesterol - chemistry ; Drug Compounding ; Drug Stability ; Factorial design ; Gels ; General pharmacology ; In Vitro Techniques ; Liposomes ; Medical sciences ; Ointments ; Particle Size ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Phospholipids - chemistry ; Rats ; Regression Analysis ; Skin Absorption ; Skin drug deposition ; Solubility ; Vesicle size ; Viscosity ; Vitamin E - administration & dosage ; Vitamin E - chemistry ; Vitamin E - metabolism ; Vitamins</subject><ispartof>International journal of pharmaceutics, 2006-08, Vol.320 (1), p.37-44</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-b8f91d013c6d1592a5480ada2783960ee2c83e75c9cd50c161fa5592ea681ca23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpharm.2006.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18027915$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16707237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Padamwar, Mahesh N.</creatorcontrib><creatorcontrib>Pokharkar, Varsha B.</creatorcontrib><title>Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>Long-term exposure of the skin to UV light causes degenerative effects, which can be minimized by using antioxidant formulations. The major challenge in this regard is that a significant amount of antioxidant should reach at the site for effective photoprotection. However, barrier properties of the skin limit their use. In the present study, Vitamin E acetate was encapsulated into liposome for improving its topical delivery. However preparation of liposomes is very difficult due to number of formulation variables involved therein. In the present work systematic statistical study for the formulation of liposomes for topical delivery of Vitamin E using the factorial design approach was undertaken. Amount of phospholipid (PL) and cholesterol (CH) were taken at three different levels and liposomes were prepared using ethanol injection method. Liposomes were characterized for encapsulation efficiency, vesicle size, zeta potential, and drug deposition in the rat skin. Gels containing liposomal dispersion (batch with higher skin deposition of VE) were prepared in Carbopol
® 980 NF and were characterized for gel strength, viscosity and drug deposition in the rat skin. Stability of liposome dispersion and gel formulation was studied at 30
°C/65% RH for 3 months. Results of regression analysis revealed that vesicle size and drug deposition in the rat skin were dependant on the lipid concentration and lipid:drug ratio. Drug deposition in rat skin had an inverse relationship with respect to PL and CH concentration. Prepared liposomal dispersion (50
mg PL:6
mg CH) showed seven-fold increase in drug deposition compared to control (plain drug dispersion). Gel formulation demonstrated six-fold and four-fold increase in drug deposition compared to control gel and marketed cream, respectively. Liposome dispersion and gel formulation were found to be stable for 3 months. Factorial design was found to be well suited to identify the key variables affecting drug deposition. Improved drug deposition from liposomal preparations demonstrates its potential for dermal delivery.</description><subject>Acrylic Resins - chemistry</subject><subject>Administration, Topical</subject><subject>Animals</subject><subject>Antioxidants - administration & dosage</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical</subject><subject>Cholesterol - chemistry</subject><subject>Drug Compounding</subject><subject>Drug Stability</subject><subject>Factorial design</subject><subject>Gels</subject><subject>General pharmacology</subject><subject>In Vitro Techniques</subject><subject>Liposomes</subject><subject>Medical sciences</subject><subject>Ointments</subject><subject>Particle Size</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Phospholipids - chemistry</subject><subject>Rats</subject><subject>Regression Analysis</subject><subject>Skin Absorption</subject><subject>Skin drug deposition</subject><subject>Solubility</subject><subject>Vesicle size</subject><subject>Viscosity</subject><subject>Vitamin E - administration & dosage</subject><subject>Vitamin E - chemistry</subject><subject>Vitamin E - metabolism</subject><subject>Vitamins</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhJ4B8gVuCHSe2wwVVLV9SJS5wtmbtydarJA62s1L59bhspB57suV5Xs9oHkLeclZzxuXHY-2Pyx3EqW4YkzVra8b4M7LjWolKtEo-JzsmlK46rsQFeZXSkRWw4eIlueBSMdUItSN_b_CEY1gmnDMNAz35DJOf6RjAoaM5LN7CSEe_hBSmchtCnNYRsg8zXZOfD3QAm0P0peYw-cNMYVliAHv3id7E9VBeS9b_D8DsaMqw96PP96_JiwHGhG-285L8_vrl1_X36vbntx_XV7eVbZs2V3s99NwxLqx0vOsb6FrNwEGjtOglQ2ysFqg621vXMcslH6ArHILU3EIjLsmH879lqj8rpmwmnyyOI8wY1mSkVpwpIZ8Eed92mne6gN0ZtDGkFHEwS_QTxHvDmXmwY45ms2Me7BjWmmKn5N5tDdb9hO4xtekowPsNgFTWPkSYrU-PnGaN6nlXuM9nDsveTh6jSdbjbNH5iDYbF_wTo_wDYBOypA</recordid><startdate>20060831</startdate><enddate>20060831</enddate><creator>Padamwar, Mahesh N.</creator><creator>Pokharkar, Varsha B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060831</creationdate><title>Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability</title><author>Padamwar, Mahesh N. ; Pokharkar, Varsha B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-b8f91d013c6d1592a5480ada2783960ee2c83e75c9cd50c161fa5592ea681ca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Administration, Topical</topic><topic>Animals</topic><topic>Antioxidants - administration & dosage</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical</topic><topic>Cholesterol - chemistry</topic><topic>Drug Compounding</topic><topic>Drug Stability</topic><topic>Factorial design</topic><topic>Gels</topic><topic>General pharmacology</topic><topic>In Vitro Techniques</topic><topic>Liposomes</topic><topic>Medical sciences</topic><topic>Ointments</topic><topic>Particle Size</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Phospholipids - chemistry</topic><topic>Rats</topic><topic>Regression Analysis</topic><topic>Skin Absorption</topic><topic>Skin drug deposition</topic><topic>Solubility</topic><topic>Vesicle size</topic><topic>Viscosity</topic><topic>Vitamin E - administration & dosage</topic><topic>Vitamin E - chemistry</topic><topic>Vitamin E - metabolism</topic><topic>Vitamins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padamwar, Mahesh N.</creatorcontrib><creatorcontrib>Pokharkar, Varsha B.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padamwar, Mahesh N.</au><au>Pokharkar, Varsha B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2006-08-31</date><risdate>2006</risdate><volume>320</volume><issue>1</issue><spage>37</spage><epage>44</epage><pages>37-44</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><coden>IJPHDE</coden><abstract>Long-term exposure of the skin to UV light causes degenerative effects, which can be minimized by using antioxidant formulations. The major challenge in this regard is that a significant amount of antioxidant should reach at the site for effective photoprotection. However, barrier properties of the skin limit their use. In the present study, Vitamin E acetate was encapsulated into liposome for improving its topical delivery. However preparation of liposomes is very difficult due to number of formulation variables involved therein. In the present work systematic statistical study for the formulation of liposomes for topical delivery of Vitamin E using the factorial design approach was undertaken. Amount of phospholipid (PL) and cholesterol (CH) were taken at three different levels and liposomes were prepared using ethanol injection method. Liposomes were characterized for encapsulation efficiency, vesicle size, zeta potential, and drug deposition in the rat skin. Gels containing liposomal dispersion (batch with higher skin deposition of VE) were prepared in Carbopol
® 980 NF and were characterized for gel strength, viscosity and drug deposition in the rat skin. Stability of liposome dispersion and gel formulation was studied at 30
°C/65% RH for 3 months. Results of regression analysis revealed that vesicle size and drug deposition in the rat skin were dependant on the lipid concentration and lipid:drug ratio. Drug deposition in rat skin had an inverse relationship with respect to PL and CH concentration. Prepared liposomal dispersion (50
mg PL:6
mg CH) showed seven-fold increase in drug deposition compared to control (plain drug dispersion). Gel formulation demonstrated six-fold and four-fold increase in drug deposition compared to control gel and marketed cream, respectively. Liposome dispersion and gel formulation were found to be stable for 3 months. Factorial design was found to be well suited to identify the key variables affecting drug deposition. Improved drug deposition from liposomal preparations demonstrates its potential for dermal delivery.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>16707237</pmid><doi>10.1016/j.ijpharm.2006.04.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-5173 |
ispartof | International journal of pharmaceutics, 2006-08, Vol.320 (1), p.37-44 |
issn | 0378-5173 1873-3476 |
language | eng |
recordid | cdi_proquest_miscellaneous_68710736 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acrylic Resins - chemistry Administration, Topical Animals Antioxidants - administration & dosage Antioxidants - chemistry Antioxidants - metabolism Biological and medical sciences Chemistry, Pharmaceutical Cholesterol - chemistry Drug Compounding Drug Stability Factorial design Gels General pharmacology In Vitro Techniques Liposomes Medical sciences Ointments Particle Size Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Phospholipids - chemistry Rats Regression Analysis Skin Absorption Skin drug deposition Solubility Vesicle size Viscosity Vitamin E - administration & dosage Vitamin E - chemistry Vitamin E - metabolism Vitamins |
title | Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20vitamin%20loaded%20topical%20liposomal%20formulation%20using%20factorial%20design%20approach:%20Drug%20deposition%20and%20stability&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Padamwar,%20Mahesh%20N.&rft.date=2006-08-31&rft.volume=320&rft.issue=1&rft.spage=37&rft.epage=44&rft.pages=37-44&rft.issn=0378-5173&rft.eissn=1873-3476&rft.coden=IJPHDE&rft_id=info:doi/10.1016/j.ijpharm.2006.04.001&rft_dat=%3Cproquest_cross%3E68710736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19458158&rft_id=info:pmid/16707237&rft_els_id=S0378517306002894&rfr_iscdi=true |