Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex
Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the Drosophila melanogaster origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ do...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2006-08, Vol.13 (8), p.684-690 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 690 |
---|---|
container_issue | 8 |
container_start_page | 684 |
container_title | Nature structural & molecular biology |
container_volume | 13 |
creator | Clarey, Megan G Erzberger, Jan P Grob, Patricia Leschziner, Andres E Berger, James M Nogales, Eva Botchan, Michael |
description | Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the
Drosophila melanogaster
origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes. |
doi_str_mv | 10.1038/nsmb1121 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68710577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185379896</galeid><sourcerecordid>A185379896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8de97432e611f261034664caa205c764ad8b8b24c454a23193d60d94982dffa43</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhgex2FoFf4EMCmIvpk4-J7lcarWFouDHdcgmZ6apM8k2yUD99826a5dVQXKRcM5z3sN5c6rqBWpPUUvEO5-mJUIYPaqOEKOskVKwxw9vSQ6rpyndtC1mrCNPqkPEBZaSiaPKfJrNCCE7C42FFXgLPtcm-D7ESWcXvB5rc639AKl2vs7XUL_3etGM7gcULkId-l_REN1QgAgmDN6tK0t6Wo1w96w66PWY4Pn2Pq6-fzj_dnbRXH3-eHm2uGoM7WhuhAXZUYKBI9RjXgajnFOjNW6Z6TjVVizFElNDGdWYIEksb62kUmDb95qS4-rNRncVw-0MKavJJQPjqD2EOSkuOtSyrvsvWKQRb7Es4Ks_wJswx2JJUhgL3BGCUIFeb6BBj6BccS5HbdaKaoEEI50Ukhfq9B9UORYmV_yG3pX4XsHJXkFhMtzlQc8pqcuvX_bZtxvWxJBShF6topt0_KlQq9Ybon5vSEFfbkealxPYHbhdiV3fVFLl2-Nu5r_E7gHu5MGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228273311</pqid></control><display><type>article</type><title>Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink</source><creator>Clarey, Megan G ; Erzberger, Jan P ; Grob, Patricia ; Leschziner, Andres E ; Berger, James M ; Nogales, Eva ; Botchan, Michael</creator><creatorcontrib>Clarey, Megan G ; Erzberger, Jan P ; Grob, Patricia ; Leschziner, Andres E ; Berger, James M ; Nogales, Eva ; Botchan, Michael</creatorcontrib><description>Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the
Drosophila melanogaster
origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb1121</identifier><identifier>PMID: 16829958</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adenosine triphosphatase ; Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; Animals ; ATP ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding proteins ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - metabolism ; Deoxyribonucleic acid ; DNA ; DNA replication ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Drosophila melanogaster ; Drosophila Proteins - chemistry ; Drosophila Proteins - metabolism ; Life Sciences ; Membrane Biology ; Microscopy, Electron ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; Molecular structure ; Nucleotides ; Nucleotides - metabolism ; Origin Recognition Complex - chemistry ; Origin Recognition Complex - metabolism ; Physiological aspects ; Protein Conformation ; Protein Structure ; Proteins ; Sequence Homology, Amino Acid</subject><ispartof>Nature structural & molecular biology, 2006-08, Vol.13 (8), p.684-690</ispartof><rights>Springer Nature America, Inc. 2006</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8de97432e611f261034664caa205c764ad8b8b24c454a23193d60d94982dffa43</citedby><cites>FETCH-LOGICAL-c474t-8de97432e611f261034664caa205c764ad8b8b24c454a23193d60d94982dffa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsmb1121$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsmb1121$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16829958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clarey, Megan G</creatorcontrib><creatorcontrib>Erzberger, Jan P</creatorcontrib><creatorcontrib>Grob, Patricia</creatorcontrib><creatorcontrib>Leschziner, Andres E</creatorcontrib><creatorcontrib>Berger, James M</creatorcontrib><creatorcontrib>Nogales, Eva</creatorcontrib><creatorcontrib>Botchan, Michael</creatorcontrib><title>Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the
Drosophila melanogaster
origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>ATP</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding proteins</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA replication</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - chemistry</subject><subject>Drosophila Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Microscopy, Electron</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Nucleotides</subject><subject>Nucleotides - metabolism</subject><subject>Origin Recognition Complex - chemistry</subject><subject>Origin Recognition Complex - metabolism</subject><subject>Physiological aspects</subject><subject>Protein Conformation</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Sequence Homology, Amino Acid</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkl1rFDEUhgex2FoFf4EMCmIvpk4-J7lcarWFouDHdcgmZ6apM8k2yUD99826a5dVQXKRcM5z3sN5c6rqBWpPUUvEO5-mJUIYPaqOEKOskVKwxw9vSQ6rpyndtC1mrCNPqkPEBZaSiaPKfJrNCCE7C42FFXgLPtcm-D7ESWcXvB5rc639AKl2vs7XUL_3etGM7gcULkId-l_REN1QgAgmDN6tK0t6Wo1w96w66PWY4Pn2Pq6-fzj_dnbRXH3-eHm2uGoM7WhuhAXZUYKBI9RjXgajnFOjNW6Z6TjVVizFElNDGdWYIEksb62kUmDb95qS4-rNRncVw-0MKavJJQPjqD2EOSkuOtSyrvsvWKQRb7Es4Ks_wJswx2JJUhgL3BGCUIFeb6BBj6BccS5HbdaKaoEEI50Ukhfq9B9UORYmV_yG3pX4XsHJXkFhMtzlQc8pqcuvX_bZtxvWxJBShF6topt0_KlQq9Ybon5vSEFfbkealxPYHbhdiV3fVFLl2-Nu5r_E7gHu5MGA</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Clarey, Megan G</creator><creator>Erzberger, Jan P</creator><creator>Grob, Patricia</creator><creator>Leschziner, Andres E</creator><creator>Berger, James M</creator><creator>Nogales, Eva</creator><creator>Botchan, Michael</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7SS</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex</title><author>Clarey, Megan G ; Erzberger, Jan P ; Grob, Patricia ; Leschziner, Andres E ; Berger, James M ; Nogales, Eva ; Botchan, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8de97432e611f261034664caa205c764ad8b8b24c454a23193d60d94982dffa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>ATP</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding proteins</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA replication</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - chemistry</topic><topic>Drosophila Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Microscopy, Electron</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Nucleotides</topic><topic>Nucleotides - metabolism</topic><topic>Origin Recognition Complex - chemistry</topic><topic>Origin Recognition Complex - metabolism</topic><topic>Physiological aspects</topic><topic>Protein Conformation</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarey, Megan G</creatorcontrib><creatorcontrib>Erzberger, Jan P</creatorcontrib><creatorcontrib>Grob, Patricia</creatorcontrib><creatorcontrib>Leschziner, Andres E</creatorcontrib><creatorcontrib>Berger, James M</creatorcontrib><creatorcontrib>Nogales, Eva</creatorcontrib><creatorcontrib>Botchan, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarey, Megan G</au><au>Erzberger, Jan P</au><au>Grob, Patricia</au><au>Leschziner, Andres E</au><au>Berger, James M</au><au>Nogales, Eva</au><au>Botchan, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>13</volume><issue>8</issue><spage>684</spage><epage>690</epage><pages>684-690</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the
Drosophila melanogaster
origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>16829958</pmid><doi>10.1038/nsmb1121</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2006-08, Vol.13 (8), p.684-690 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_miscellaneous_68710577 |
source | MEDLINE; Nature; SpringerLink |
subjects | Adenosine triphosphatase Adenosine Triphosphate - metabolism Amino Acid Sequence Animals ATP Bacterial Proteins - chemistry Bacterial Proteins - metabolism Binding proteins Biochemistry Biological Microscopy Biomedical and Life Sciences Cell Cycle Proteins - chemistry Cell Cycle Proteins - metabolism Deoxyribonucleic acid DNA DNA replication DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism Drosophila melanogaster Drosophila Proteins - chemistry Drosophila Proteins - metabolism Life Sciences Membrane Biology Microscopy, Electron Models, Molecular Molecular biology Molecular Sequence Data Molecular structure Nucleotides Nucleotides - metabolism Origin Recognition Complex - chemistry Origin Recognition Complex - metabolism Physiological aspects Protein Conformation Protein Structure Proteins Sequence Homology, Amino Acid |
title | Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleotide-dependent%20conformational%20changes%20in%20the%20DnaA-like%20core%20of%20the%20origin%20recognition%20complex&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Clarey,%20Megan%20G&rft.date=2006-08-01&rft.volume=13&rft.issue=8&rft.spage=684&rft.epage=690&rft.pages=684-690&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb1121&rft_dat=%3Cgale_proqu%3EA185379896%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228273311&rft_id=info:pmid/16829958&rft_galeid=A185379896&rfr_iscdi=true |