RGS4 and RGS5 Are in vivo Substrates of the N-End Rule Pathway

The ATE1-encoded Arg-transferase mediates conjugation of Arg to N-terminal Asp, Glu, and Cys of certain eukaryotic proteins, yielding N-terminal Arg that can act as a degradation signal for the ubiquitin-dependent N-end rule pathway. We have previously shown that mouse ATE1-/-embryos die with defect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-10, Vol.102 (42), p.15030-15035
Hauptverfasser: Min Jae Lee, Tasaki, Takafumi, Kayoko Moroi, An, Jee Young, Kimura, Sadao, Davydov, Ilia V., Kwon, Yong Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15035
container_issue 42
container_start_page 15030
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Min Jae Lee
Tasaki, Takafumi
Kayoko Moroi
An, Jee Young
Kimura, Sadao
Davydov, Ilia V.
Kwon, Yong Tae
description The ATE1-encoded Arg-transferase mediates conjugation of Arg to N-terminal Asp, Glu, and Cys of certain eukaryotic proteins, yielding N-terminal Arg that can act as a degradation signal for the ubiquitin-dependent N-end rule pathway. We have previously shown that mouse ATE1-/-embryos die with defects in heart development and angiogenesis. Here, we report that the ATE1 Arg-transferase mediates the in vivo degradation of RGS4 and RGS5, which are negative regulators of specific G proteins whose functions include cardiac growth and angiogenesis. The proteolysis of these regulators of G protein signaling (RGS) proteins was perturbed either by hypoxia or in cells lacking ubiquitin ligases UBR1 and/or UBR2. Mutant RGS proteins in which the conserved Cys-2 residue could not become N-terminal were long-lived in vivo. We propose a model in which the sequential modifications of RGS4, RGS5, and RGS16 (N-terminal exposure of their Cys-2, its oxidation, and subsequent arginylation) act as a licensing mechanism in response to extracellular and intracellular signals before the targeting for proteolysis by UBR1 and UBR2. We also show that ATE1-/-embryos are impaired in the activation of extracellular signal-regulated kinase mitogen-activated protein kinases and in the expression of G protein-induced downstream effectors such as Jun, cyclin D1, and$\beta-myosin$heavy chain. These results establish RGS4 and RGS5 as in vivo substrates of the mammalian N-end rule pathway and also suggest that the$O_2-ATE1-UBR1/UBR2$proteolytic circuit plays a role in RGS-regulated G protein signaling in the cardiovascular system.
doi_str_mv 10.1073/pnas.0507533102
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68706647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4143522</jstor_id><sourcerecordid>4143522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-6841f57fd922c3327f2fe9b891268834a545a84b4605845e547a0ce4597cf4233</originalsourceid><addsrcrecordid>eNqF0c1rFDEYBvAgit1Wz15EgoeCh2nfJG8-5lIopVahqFg9h-xsxp1ldrImmdX-92bYpateekogv_chyUPIKwZnDLQ43wwunYEELYVgwJ-QGYOaVQpreEpmAFxXBjkekeOUVgBQSwPPyRFTnGkQYkYuvt7cIXXDgpaNpJfR026g224b6N04Tzm67BMNLc1LTz9V1xMce0-_uLz85e5fkGet65N_uV9PyPf319-uPlS3n28-Xl3eVg3KOlfKIGulbhc1540QXLe89fXc1IwrYwQ6idIZnKMCaVB6idpB48usblrkQpyQi13uZpyv_aLxQ7lZbzexW7t4b4Pr7L8nQ7e0P8LWMi61FrIEnO4DYvg5-pTtukuN73s3-DAmq4wGpVA_CpkWtdIIBb79D67CGIfyC5YDK0iwKe18h5oYUoq-fbgyAzs1aKcG7aHBMvHm75ce_L6yAt7twTR5iOMWuWUSBNh27Pvsf-di6SO2kNc7sko5xAeDDIXkXPwB_5208g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201396317</pqid></control><display><type>article</type><title>RGS4 and RGS5 Are in vivo Substrates of the N-End Rule Pathway</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Min Jae Lee ; Tasaki, Takafumi ; Kayoko Moroi ; An, Jee Young ; Kimura, Sadao ; Davydov, Ilia V. ; Kwon, Yong Tae</creator><creatorcontrib>Min Jae Lee ; Tasaki, Takafumi ; Kayoko Moroi ; An, Jee Young ; Kimura, Sadao ; Davydov, Ilia V. ; Kwon, Yong Tae</creatorcontrib><description>The ATE1-encoded Arg-transferase mediates conjugation of Arg to N-terminal Asp, Glu, and Cys of certain eukaryotic proteins, yielding N-terminal Arg that can act as a degradation signal for the ubiquitin-dependent N-end rule pathway. We have previously shown that mouse ATE1-/-embryos die with defects in heart development and angiogenesis. Here, we report that the ATE1 Arg-transferase mediates the in vivo degradation of RGS4 and RGS5, which are negative regulators of specific G proteins whose functions include cardiac growth and angiogenesis. The proteolysis of these regulators of G protein signaling (RGS) proteins was perturbed either by hypoxia or in cells lacking ubiquitin ligases UBR1 and/or UBR2. Mutant RGS proteins in which the conserved Cys-2 residue could not become N-terminal were long-lived in vivo. We propose a model in which the sequential modifications of RGS4, RGS5, and RGS16 (N-terminal exposure of their Cys-2, its oxidation, and subsequent arginylation) act as a licensing mechanism in response to extracellular and intracellular signals before the targeting for proteolysis by UBR1 and UBR2. We also show that ATE1-/-embryos are impaired in the activation of extracellular signal-regulated kinase mitogen-activated protein kinases and in the expression of G protein-induced downstream effectors such as Jun, cyclin D1, and$\beta-myosin$heavy chain. These results establish RGS4 and RGS5 as in vivo substrates of the mammalian N-end rule pathway and also suggest that the$O_2-ATE1-UBR1/UBR2$proteolytic circuit plays a role in RGS-regulated G protein signaling in the cardiovascular system.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0507533102</identifier><identifier>PMID: 16217033</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aminoacyltransferases - genetics ; Aminoacyltransferases - metabolism ; Animals ; Antibodies ; Biochemistry ; Biological Sciences ; Cell growth ; Cysteine - metabolism ; Embryos ; Eukaryotes ; GTP-Binding Proteins - metabolism ; Heart ; Hypoxia ; Immunoblotting ; Mice ; Mice, Knockout ; Oxidation ; Proteins ; Reticulocytes ; RGS proteins ; RGS Proteins - genetics ; RGS Proteins - metabolism ; Second Messenger Systems - physiology ; Signal transduction ; Ubiquitin - metabolism ; Ubiquitin-Protein Ligases - metabolism ; Western blotting</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-10, Vol.102 (42), p.15030-15035</ispartof><rights>Copyright 2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 18, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-6841f57fd922c3327f2fe9b891268834a545a84b4605845e547a0ce4597cf4233</citedby><cites>FETCH-LOGICAL-c459t-6841f57fd922c3327f2fe9b891268834a545a84b4605845e547a0ce4597cf4233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4143522$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4143522$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16217033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min Jae Lee</creatorcontrib><creatorcontrib>Tasaki, Takafumi</creatorcontrib><creatorcontrib>Kayoko Moroi</creatorcontrib><creatorcontrib>An, Jee Young</creatorcontrib><creatorcontrib>Kimura, Sadao</creatorcontrib><creatorcontrib>Davydov, Ilia V.</creatorcontrib><creatorcontrib>Kwon, Yong Tae</creatorcontrib><title>RGS4 and RGS5 Are in vivo Substrates of the N-End Rule Pathway</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The ATE1-encoded Arg-transferase mediates conjugation of Arg to N-terminal Asp, Glu, and Cys of certain eukaryotic proteins, yielding N-terminal Arg that can act as a degradation signal for the ubiquitin-dependent N-end rule pathway. We have previously shown that mouse ATE1-/-embryos die with defects in heart development and angiogenesis. Here, we report that the ATE1 Arg-transferase mediates the in vivo degradation of RGS4 and RGS5, which are negative regulators of specific G proteins whose functions include cardiac growth and angiogenesis. The proteolysis of these regulators of G protein signaling (RGS) proteins was perturbed either by hypoxia or in cells lacking ubiquitin ligases UBR1 and/or UBR2. Mutant RGS proteins in which the conserved Cys-2 residue could not become N-terminal were long-lived in vivo. We propose a model in which the sequential modifications of RGS4, RGS5, and RGS16 (N-terminal exposure of their Cys-2, its oxidation, and subsequent arginylation) act as a licensing mechanism in response to extracellular and intracellular signals before the targeting for proteolysis by UBR1 and UBR2. We also show that ATE1-/-embryos are impaired in the activation of extracellular signal-regulated kinase mitogen-activated protein kinases and in the expression of G protein-induced downstream effectors such as Jun, cyclin D1, and$\beta-myosin$heavy chain. These results establish RGS4 and RGS5 as in vivo substrates of the mammalian N-end rule pathway and also suggest that the$O_2-ATE1-UBR1/UBR2$proteolytic circuit plays a role in RGS-regulated G protein signaling in the cardiovascular system.</description><subject>Aminoacyltransferases - genetics</subject><subject>Aminoacyltransferases - metabolism</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell growth</subject><subject>Cysteine - metabolism</subject><subject>Embryos</subject><subject>Eukaryotes</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Heart</subject><subject>Hypoxia</subject><subject>Immunoblotting</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Oxidation</subject><subject>Proteins</subject><subject>Reticulocytes</subject><subject>RGS proteins</subject><subject>RGS Proteins - genetics</subject><subject>RGS Proteins - metabolism</subject><subject>Second Messenger Systems - physiology</subject><subject>Signal transduction</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Western blotting</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1rFDEYBvAgit1Wz15EgoeCh2nfJG8-5lIopVahqFg9h-xsxp1ldrImmdX-92bYpateekogv_chyUPIKwZnDLQ43wwunYEELYVgwJ-QGYOaVQpreEpmAFxXBjkekeOUVgBQSwPPyRFTnGkQYkYuvt7cIXXDgpaNpJfR026g224b6N04Tzm67BMNLc1LTz9V1xMce0-_uLz85e5fkGet65N_uV9PyPf319-uPlS3n28-Xl3eVg3KOlfKIGulbhc1540QXLe89fXc1IwrYwQ6idIZnKMCaVB6idpB48usblrkQpyQi13uZpyv_aLxQ7lZbzexW7t4b4Pr7L8nQ7e0P8LWMi61FrIEnO4DYvg5-pTtukuN73s3-DAmq4wGpVA_CpkWtdIIBb79D67CGIfyC5YDK0iwKe18h5oYUoq-fbgyAzs1aKcG7aHBMvHm75ce_L6yAt7twTR5iOMWuWUSBNh27Pvsf-di6SO2kNc7sko5xAeDDIXkXPwB_5208g</recordid><startdate>20051018</startdate><enddate>20051018</enddate><creator>Min Jae Lee</creator><creator>Tasaki, Takafumi</creator><creator>Kayoko Moroi</creator><creator>An, Jee Young</creator><creator>Kimura, Sadao</creator><creator>Davydov, Ilia V.</creator><creator>Kwon, Yong Tae</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051018</creationdate><title>RGS4 and RGS5 Are in vivo Substrates of the N-End Rule Pathway</title><author>Min Jae Lee ; Tasaki, Takafumi ; Kayoko Moroi ; An, Jee Young ; Kimura, Sadao ; Davydov, Ilia V. ; Kwon, Yong Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-6841f57fd922c3327f2fe9b891268834a545a84b4605845e547a0ce4597cf4233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aminoacyltransferases - genetics</topic><topic>Aminoacyltransferases - metabolism</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell growth</topic><topic>Cysteine - metabolism</topic><topic>Embryos</topic><topic>Eukaryotes</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Heart</topic><topic>Hypoxia</topic><topic>Immunoblotting</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Oxidation</topic><topic>Proteins</topic><topic>Reticulocytes</topic><topic>RGS proteins</topic><topic>RGS Proteins - genetics</topic><topic>RGS Proteins - metabolism</topic><topic>Second Messenger Systems - physiology</topic><topic>Signal transduction</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min Jae Lee</creatorcontrib><creatorcontrib>Tasaki, Takafumi</creatorcontrib><creatorcontrib>Kayoko Moroi</creatorcontrib><creatorcontrib>An, Jee Young</creatorcontrib><creatorcontrib>Kimura, Sadao</creatorcontrib><creatorcontrib>Davydov, Ilia V.</creatorcontrib><creatorcontrib>Kwon, Yong Tae</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min Jae Lee</au><au>Tasaki, Takafumi</au><au>Kayoko Moroi</au><au>An, Jee Young</au><au>Kimura, Sadao</au><au>Davydov, Ilia V.</au><au>Kwon, Yong Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RGS4 and RGS5 Are in vivo Substrates of the N-End Rule Pathway</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-10-18</date><risdate>2005</risdate><volume>102</volume><issue>42</issue><spage>15030</spage><epage>15035</epage><pages>15030-15035</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The ATE1-encoded Arg-transferase mediates conjugation of Arg to N-terminal Asp, Glu, and Cys of certain eukaryotic proteins, yielding N-terminal Arg that can act as a degradation signal for the ubiquitin-dependent N-end rule pathway. We have previously shown that mouse ATE1-/-embryos die with defects in heart development and angiogenesis. Here, we report that the ATE1 Arg-transferase mediates the in vivo degradation of RGS4 and RGS5, which are negative regulators of specific G proteins whose functions include cardiac growth and angiogenesis. The proteolysis of these regulators of G protein signaling (RGS) proteins was perturbed either by hypoxia or in cells lacking ubiquitin ligases UBR1 and/or UBR2. Mutant RGS proteins in which the conserved Cys-2 residue could not become N-terminal were long-lived in vivo. We propose a model in which the sequential modifications of RGS4, RGS5, and RGS16 (N-terminal exposure of their Cys-2, its oxidation, and subsequent arginylation) act as a licensing mechanism in response to extracellular and intracellular signals before the targeting for proteolysis by UBR1 and UBR2. We also show that ATE1-/-embryos are impaired in the activation of extracellular signal-regulated kinase mitogen-activated protein kinases and in the expression of G protein-induced downstream effectors such as Jun, cyclin D1, and$\beta-myosin$heavy chain. These results establish RGS4 and RGS5 as in vivo substrates of the mammalian N-end rule pathway and also suggest that the$O_2-ATE1-UBR1/UBR2$proteolytic circuit plays a role in RGS-regulated G protein signaling in the cardiovascular system.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16217033</pmid><doi>10.1073/pnas.0507533102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-10, Vol.102 (42), p.15030-15035
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_68706647
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aminoacyltransferases - genetics
Aminoacyltransferases - metabolism
Animals
Antibodies
Biochemistry
Biological Sciences
Cell growth
Cysteine - metabolism
Embryos
Eukaryotes
GTP-Binding Proteins - metabolism
Heart
Hypoxia
Immunoblotting
Mice
Mice, Knockout
Oxidation
Proteins
Reticulocytes
RGS proteins
RGS Proteins - genetics
RGS Proteins - metabolism
Second Messenger Systems - physiology
Signal transduction
Ubiquitin - metabolism
Ubiquitin-Protein Ligases - metabolism
Western blotting
title RGS4 and RGS5 Are in vivo Substrates of the N-End Rule Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RGS4%20and%20RGS5%20Are%20in%20vivo%20Substrates%20of%20the%20N-End%20Rule%20Pathway&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Min%20Jae%20Lee&rft.date=2005-10-18&rft.volume=102&rft.issue=42&rft.spage=15030&rft.epage=15035&rft.pages=15030-15035&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0507533102&rft_dat=%3Cjstor_proqu%3E4143522%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201396317&rft_id=info:pmid/16217033&rft_jstor_id=4143522&rfr_iscdi=true