Blood-CSF barrier function in the rat embryo
Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) aft...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2006-07, Vol.24 (1), p.65-76 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | The European journal of neuroscience |
container_volume | 24 |
creator | Johansson, P. A. Dziegielewska, K. M. Ek, C. J. Habgood, M. D. Liddelow, S. A. Potter, A. M. Stolp, H. B. Saunders, N. R. |
description | Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at ∼ 20% at E14–18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13–14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three‐fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin–dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood–CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4–5 times greater than bovine, indicating selective blood‐to‐CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood–CSF interface. |
doi_str_mv | 10.1111/j.1460-9568.2006.04904.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68704195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68704195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4364-d006328ac551104df3cca4061b75025da081cd51fb17ffa73847151902ca25863</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EgvL4BZQVKxJm4kecBQsoUF4qC0BFbCzHcURK2hQ7Fe3fk9AKluCNR5pzx55DSIAQYXtOxhEyAWHKhYxiABEBS4FFiw3S-2lskh6knIYSxcsO2fV-DABSML5NdlDIrsYeOT6v6joP-49XQaadK60LivnUNGU9Dcpp0LzZwOkmsJPMLet9slXoytuD9b1Hnq8un_rX4f3D4KZ_dh8aRgUL8_ZHNJbacI4ILC-oMZqBwCzhEPNcg0STcywyTIpCJ1SyBDmmEBsdcynoHjlazZ25-mNufaMmpTe2qvTU1nOvhEyAYbvcXyCmNBaUyxaUK9C42ntnCzVz5US7pUJQnVI1Vp051ZlTnVL1rVQt2ujh-o15NrH5b3DtsAVOV8BnWdnlvwery9thV7X5cJUvfWMXP3nt3pVIaMLVaDhQt3R095peDJSkXycWkNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19326358</pqid></control><display><type>article</type><title>Blood-CSF barrier function in the rat embryo</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Johansson, P. A. ; Dziegielewska, K. M. ; Ek, C. J. ; Habgood, M. D. ; Liddelow, S. A. ; Potter, A. M. ; Stolp, H. B. ; Saunders, N. R.</creator><creatorcontrib>Johansson, P. A. ; Dziegielewska, K. M. ; Ek, C. J. ; Habgood, M. D. ; Liddelow, S. A. ; Potter, A. M. ; Stolp, H. B. ; Saunders, N. R.</creatorcontrib><description>Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at ∼ 20% at E14–18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13–14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three‐fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin–dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood–CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4–5 times greater than bovine, indicating selective blood‐to‐CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood–CSF interface.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2006.04904.x</identifier><identifier>PMID: 16800861</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Albumins - metabolism ; Amniotic Fluid - metabolism ; Animals ; Blood Proteins - cerebrospinal fluid ; Blood Proteins - metabolism ; blood-brain barrier ; Blood-Brain Barrier - embryology ; Blood-Brain Barrier - physiology ; Brain - anatomy & histology ; Brain - embryology ; Brain - metabolism ; brain ventricles ; Cattle ; Cerebral Ventricles - anatomy & histology ; Cerebral Ventricles - embryology ; Cerebrospinal Fluid - physiology ; Choroid Plexus - embryology ; Choroid Plexus - metabolism ; epithelial cells ; Humans ; Inulin - pharmacokinetics ; Organ Size ; Permeability ; protein transfer ; Protein Transport ; Rats ; Rats, Sprague-Dawley ; Sucrose - pharmacokinetics</subject><ispartof>The European journal of neuroscience, 2006-07, Vol.24 (1), p.65-76</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4364-d006328ac551104df3cca4061b75025da081cd51fb17ffa73847151902ca25863</citedby><cites>FETCH-LOGICAL-c4364-d006328ac551104df3cca4061b75025da081cd51fb17ffa73847151902ca25863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-9568.2006.04904.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-9568.2006.04904.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16800861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johansson, P. A.</creatorcontrib><creatorcontrib>Dziegielewska, K. M.</creatorcontrib><creatorcontrib>Ek, C. J.</creatorcontrib><creatorcontrib>Habgood, M. D.</creatorcontrib><creatorcontrib>Liddelow, S. A.</creatorcontrib><creatorcontrib>Potter, A. M.</creatorcontrib><creatorcontrib>Stolp, H. B.</creatorcontrib><creatorcontrib>Saunders, N. R.</creatorcontrib><title>Blood-CSF barrier function in the rat embryo</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at ∼ 20% at E14–18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13–14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three‐fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin–dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood–CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4–5 times greater than bovine, indicating selective blood‐to‐CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood–CSF interface.</description><subject>Albumins - metabolism</subject><subject>Amniotic Fluid - metabolism</subject><subject>Animals</subject><subject>Blood Proteins - cerebrospinal fluid</subject><subject>Blood Proteins - metabolism</subject><subject>blood-brain barrier</subject><subject>Blood-Brain Barrier - embryology</subject><subject>Blood-Brain Barrier - physiology</subject><subject>Brain - anatomy & histology</subject><subject>Brain - embryology</subject><subject>Brain - metabolism</subject><subject>brain ventricles</subject><subject>Cattle</subject><subject>Cerebral Ventricles - anatomy & histology</subject><subject>Cerebral Ventricles - embryology</subject><subject>Cerebrospinal Fluid - physiology</subject><subject>Choroid Plexus - embryology</subject><subject>Choroid Plexus - metabolism</subject><subject>epithelial cells</subject><subject>Humans</subject><subject>Inulin - pharmacokinetics</subject><subject>Organ Size</subject><subject>Permeability</subject><subject>protein transfer</subject><subject>Protein Transport</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sucrose - pharmacokinetics</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0EgvL4BZQVKxJm4kecBQsoUF4qC0BFbCzHcURK2hQ7Fe3fk9AKluCNR5pzx55DSIAQYXtOxhEyAWHKhYxiABEBS4FFiw3S-2lskh6knIYSxcsO2fV-DABSML5NdlDIrsYeOT6v6joP-49XQaadK60LivnUNGU9Dcpp0LzZwOkmsJPMLet9slXoytuD9b1Hnq8un_rX4f3D4KZ_dh8aRgUL8_ZHNJbacI4ILC-oMZqBwCzhEPNcg0STcywyTIpCJ1SyBDmmEBsdcynoHjlazZ25-mNufaMmpTe2qvTU1nOvhEyAYbvcXyCmNBaUyxaUK9C42ntnCzVz5US7pUJQnVI1Vp051ZlTnVL1rVQt2ujh-o15NrH5b3DtsAVOV8BnWdnlvwery9thV7X5cJUvfWMXP3nt3pVIaMLVaDhQt3R095peDJSkXycWkNo</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Johansson, P. A.</creator><creator>Dziegielewska, K. M.</creator><creator>Ek, C. J.</creator><creator>Habgood, M. D.</creator><creator>Liddelow, S. A.</creator><creator>Potter, A. M.</creator><creator>Stolp, H. B.</creator><creator>Saunders, N. R.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200607</creationdate><title>Blood-CSF barrier function in the rat embryo</title><author>Johansson, P. A. ; Dziegielewska, K. M. ; Ek, C. J. ; Habgood, M. D. ; Liddelow, S. A. ; Potter, A. M. ; Stolp, H. B. ; Saunders, N. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4364-d006328ac551104df3cca4061b75025da081cd51fb17ffa73847151902ca25863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Albumins - metabolism</topic><topic>Amniotic Fluid - metabolism</topic><topic>Animals</topic><topic>Blood Proteins - cerebrospinal fluid</topic><topic>Blood Proteins - metabolism</topic><topic>blood-brain barrier</topic><topic>Blood-Brain Barrier - embryology</topic><topic>Blood-Brain Barrier - physiology</topic><topic>Brain - anatomy & histology</topic><topic>Brain - embryology</topic><topic>Brain - metabolism</topic><topic>brain ventricles</topic><topic>Cattle</topic><topic>Cerebral Ventricles - anatomy & histology</topic><topic>Cerebral Ventricles - embryology</topic><topic>Cerebrospinal Fluid - physiology</topic><topic>Choroid Plexus - embryology</topic><topic>Choroid Plexus - metabolism</topic><topic>epithelial cells</topic><topic>Humans</topic><topic>Inulin - pharmacokinetics</topic><topic>Organ Size</topic><topic>Permeability</topic><topic>protein transfer</topic><topic>Protein Transport</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sucrose - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johansson, P. A.</creatorcontrib><creatorcontrib>Dziegielewska, K. M.</creatorcontrib><creatorcontrib>Ek, C. J.</creatorcontrib><creatorcontrib>Habgood, M. D.</creatorcontrib><creatorcontrib>Liddelow, S. A.</creatorcontrib><creatorcontrib>Potter, A. M.</creatorcontrib><creatorcontrib>Stolp, H. B.</creatorcontrib><creatorcontrib>Saunders, N. R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johansson, P. A.</au><au>Dziegielewska, K. M.</au><au>Ek, C. J.</au><au>Habgood, M. D.</au><au>Liddelow, S. A.</au><au>Potter, A. M.</au><au>Stolp, H. B.</au><au>Saunders, N. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood-CSF barrier function in the rat embryo</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2006-07</date><risdate>2006</risdate><volume>24</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at ∼ 20% at E14–18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13–14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three‐fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin–dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood–CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4–5 times greater than bovine, indicating selective blood‐to‐CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood–CSF interface.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16800861</pmid><doi>10.1111/j.1460-9568.2006.04904.x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-816X |
ispartof | The European journal of neuroscience, 2006-07, Vol.24 (1), p.65-76 |
issn | 0953-816X 1460-9568 |
language | eng |
recordid | cdi_proquest_miscellaneous_68704195 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Albumins - metabolism Amniotic Fluid - metabolism Animals Blood Proteins - cerebrospinal fluid Blood Proteins - metabolism blood-brain barrier Blood-Brain Barrier - embryology Blood-Brain Barrier - physiology Brain - anatomy & histology Brain - embryology Brain - metabolism brain ventricles Cattle Cerebral Ventricles - anatomy & histology Cerebral Ventricles - embryology Cerebrospinal Fluid - physiology Choroid Plexus - embryology Choroid Plexus - metabolism epithelial cells Humans Inulin - pharmacokinetics Organ Size Permeability protein transfer Protein Transport Rats Rats, Sprague-Dawley Sucrose - pharmacokinetics |
title | Blood-CSF barrier function in the rat embryo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood-CSF%20barrier%20function%20in%20the%20rat%20embryo&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Johansson,%20P.%20A.&rft.date=2006-07&rft.volume=24&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2006.04904.x&rft_dat=%3Cproquest_cross%3E68704195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19326358&rft_id=info:pmid/16800861&rfr_iscdi=true |