Blood-CSF barrier function in the rat embryo

Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) aft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2006-07, Vol.24 (1), p.65-76
Hauptverfasser: Johansson, P. A., Dziegielewska, K. M., Ek, C. J., Habgood, M. D., Liddelow, S. A., Potter, A. M., Stolp, H. B., Saunders, N. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 65
container_title The European journal of neuroscience
container_volume 24
creator Johansson, P. A.
Dziegielewska, K. M.
Ek, C. J.
Habgood, M. D.
Liddelow, S. A.
Potter, A. M.
Stolp, H. B.
Saunders, N. R.
description Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at ∼ 20% at E14–18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13–14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three‐fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin–dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood–CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4–5 times greater than bovine, indicating selective blood‐to‐CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood–CSF interface.
doi_str_mv 10.1111/j.1460-9568.2006.04904.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68704195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68704195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4364-d006328ac551104df3cca4061b75025da081cd51fb17ffa73847151902ca25863</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EgvL4BZQVKxJm4kecBQsoUF4qC0BFbCzHcURK2hQ7Fe3fk9AKluCNR5pzx55DSIAQYXtOxhEyAWHKhYxiABEBS4FFiw3S-2lskh6knIYSxcsO2fV-DABSML5NdlDIrsYeOT6v6joP-49XQaadK60LivnUNGU9Dcpp0LzZwOkmsJPMLet9slXoytuD9b1Hnq8un_rX4f3D4KZ_dh8aRgUL8_ZHNJbacI4ILC-oMZqBwCzhEPNcg0STcywyTIpCJ1SyBDmmEBsdcynoHjlazZ25-mNufaMmpTe2qvTU1nOvhEyAYbvcXyCmNBaUyxaUK9C42ntnCzVz5US7pUJQnVI1Vp051ZlTnVL1rVQt2ujh-o15NrH5b3DtsAVOV8BnWdnlvwery9thV7X5cJUvfWMXP3nt3pVIaMLVaDhQt3R095peDJSkXycWkNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19326358</pqid></control><display><type>article</type><title>Blood-CSF barrier function in the rat embryo</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Johansson, P. A. ; Dziegielewska, K. M. ; Ek, C. J. ; Habgood, M. D. ; Liddelow, S. A. ; Potter, A. M. ; Stolp, H. B. ; Saunders, N. R.</creator><creatorcontrib>Johansson, P. A. ; Dziegielewska, K. M. ; Ek, C. J. ; Habgood, M. D. ; Liddelow, S. A. ; Potter, A. M. ; Stolp, H. B. ; Saunders, N. R.</creatorcontrib><description>Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at ∼ 20% at E14–18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13–14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three‐fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin–dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood–CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4–5 times greater than bovine, indicating selective blood‐to‐CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood–CSF interface.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2006.04904.x</identifier><identifier>PMID: 16800861</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Albumins - metabolism ; Amniotic Fluid - metabolism ; Animals ; Blood Proteins - cerebrospinal fluid ; Blood Proteins - metabolism ; blood-brain barrier ; Blood-Brain Barrier - embryology ; Blood-Brain Barrier - physiology ; Brain - anatomy &amp; histology ; Brain - embryology ; Brain - metabolism ; brain ventricles ; Cattle ; Cerebral Ventricles - anatomy &amp; histology ; Cerebral Ventricles - embryology ; Cerebrospinal Fluid - physiology ; Choroid Plexus - embryology ; Choroid Plexus - metabolism ; epithelial cells ; Humans ; Inulin - pharmacokinetics ; Organ Size ; Permeability ; protein transfer ; Protein Transport ; Rats ; Rats, Sprague-Dawley ; Sucrose - pharmacokinetics</subject><ispartof>The European journal of neuroscience, 2006-07, Vol.24 (1), p.65-76</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4364-d006328ac551104df3cca4061b75025da081cd51fb17ffa73847151902ca25863</citedby><cites>FETCH-LOGICAL-c4364-d006328ac551104df3cca4061b75025da081cd51fb17ffa73847151902ca25863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-9568.2006.04904.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-9568.2006.04904.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16800861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johansson, P. A.</creatorcontrib><creatorcontrib>Dziegielewska, K. M.</creatorcontrib><creatorcontrib>Ek, C. J.</creatorcontrib><creatorcontrib>Habgood, M. D.</creatorcontrib><creatorcontrib>Liddelow, S. A.</creatorcontrib><creatorcontrib>Potter, A. M.</creatorcontrib><creatorcontrib>Stolp, H. B.</creatorcontrib><creatorcontrib>Saunders, N. R.</creatorcontrib><title>Blood-CSF barrier function in the rat embryo</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at ∼ 20% at E14–18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13–14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three‐fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin–dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood–CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4–5 times greater than bovine, indicating selective blood‐to‐CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood–CSF interface.</description><subject>Albumins - metabolism</subject><subject>Amniotic Fluid - metabolism</subject><subject>Animals</subject><subject>Blood Proteins - cerebrospinal fluid</subject><subject>Blood Proteins - metabolism</subject><subject>blood-brain barrier</subject><subject>Blood-Brain Barrier - embryology</subject><subject>Blood-Brain Barrier - physiology</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - embryology</subject><subject>Brain - metabolism</subject><subject>brain ventricles</subject><subject>Cattle</subject><subject>Cerebral Ventricles - anatomy &amp; histology</subject><subject>Cerebral Ventricles - embryology</subject><subject>Cerebrospinal Fluid - physiology</subject><subject>Choroid Plexus - embryology</subject><subject>Choroid Plexus - metabolism</subject><subject>epithelial cells</subject><subject>Humans</subject><subject>Inulin - pharmacokinetics</subject><subject>Organ Size</subject><subject>Permeability</subject><subject>protein transfer</subject><subject>Protein Transport</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sucrose - pharmacokinetics</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0EgvL4BZQVKxJm4kecBQsoUF4qC0BFbCzHcURK2hQ7Fe3fk9AKluCNR5pzx55DSIAQYXtOxhEyAWHKhYxiABEBS4FFiw3S-2lskh6knIYSxcsO2fV-DABSML5NdlDIrsYeOT6v6joP-49XQaadK60LivnUNGU9Dcpp0LzZwOkmsJPMLet9slXoytuD9b1Hnq8un_rX4f3D4KZ_dh8aRgUL8_ZHNJbacI4ILC-oMZqBwCzhEPNcg0STcywyTIpCJ1SyBDmmEBsdcynoHjlazZ25-mNufaMmpTe2qvTU1nOvhEyAYbvcXyCmNBaUyxaUK9C42ntnCzVz5US7pUJQnVI1Vp051ZlTnVL1rVQt2ujh-o15NrH5b3DtsAVOV8BnWdnlvwery9thV7X5cJUvfWMXP3nt3pVIaMLVaDhQt3R095peDJSkXycWkNo</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Johansson, P. A.</creator><creator>Dziegielewska, K. M.</creator><creator>Ek, C. J.</creator><creator>Habgood, M. D.</creator><creator>Liddelow, S. A.</creator><creator>Potter, A. M.</creator><creator>Stolp, H. B.</creator><creator>Saunders, N. R.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200607</creationdate><title>Blood-CSF barrier function in the rat embryo</title><author>Johansson, P. A. ; Dziegielewska, K. M. ; Ek, C. J. ; Habgood, M. D. ; Liddelow, S. A. ; Potter, A. M. ; Stolp, H. B. ; Saunders, N. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4364-d006328ac551104df3cca4061b75025da081cd51fb17ffa73847151902ca25863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Albumins - metabolism</topic><topic>Amniotic Fluid - metabolism</topic><topic>Animals</topic><topic>Blood Proteins - cerebrospinal fluid</topic><topic>Blood Proteins - metabolism</topic><topic>blood-brain barrier</topic><topic>Blood-Brain Barrier - embryology</topic><topic>Blood-Brain Barrier - physiology</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - embryology</topic><topic>Brain - metabolism</topic><topic>brain ventricles</topic><topic>Cattle</topic><topic>Cerebral Ventricles - anatomy &amp; histology</topic><topic>Cerebral Ventricles - embryology</topic><topic>Cerebrospinal Fluid - physiology</topic><topic>Choroid Plexus - embryology</topic><topic>Choroid Plexus - metabolism</topic><topic>epithelial cells</topic><topic>Humans</topic><topic>Inulin - pharmacokinetics</topic><topic>Organ Size</topic><topic>Permeability</topic><topic>protein transfer</topic><topic>Protein Transport</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sucrose - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johansson, P. A.</creatorcontrib><creatorcontrib>Dziegielewska, K. M.</creatorcontrib><creatorcontrib>Ek, C. J.</creatorcontrib><creatorcontrib>Habgood, M. D.</creatorcontrib><creatorcontrib>Liddelow, S. A.</creatorcontrib><creatorcontrib>Potter, A. M.</creatorcontrib><creatorcontrib>Stolp, H. B.</creatorcontrib><creatorcontrib>Saunders, N. R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johansson, P. A.</au><au>Dziegielewska, K. M.</au><au>Ek, C. J.</au><au>Habgood, M. D.</au><au>Liddelow, S. A.</au><au>Potter, A. M.</au><au>Stolp, H. B.</au><au>Saunders, N. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood-CSF barrier function in the rat embryo</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2006-07</date><risdate>2006</risdate><volume>24</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Blood–cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12–18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at ∼ 20% at E14–18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13–14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three‐fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin–dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood–CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4–5 times greater than bovine, indicating selective blood‐to‐CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood–CSF interface.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16800861</pmid><doi>10.1111/j.1460-9568.2006.04904.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2006-07, Vol.24 (1), p.65-76
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_68704195
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Albumins - metabolism
Amniotic Fluid - metabolism
Animals
Blood Proteins - cerebrospinal fluid
Blood Proteins - metabolism
blood-brain barrier
Blood-Brain Barrier - embryology
Blood-Brain Barrier - physiology
Brain - anatomy & histology
Brain - embryology
Brain - metabolism
brain ventricles
Cattle
Cerebral Ventricles - anatomy & histology
Cerebral Ventricles - embryology
Cerebrospinal Fluid - physiology
Choroid Plexus - embryology
Choroid Plexus - metabolism
epithelial cells
Humans
Inulin - pharmacokinetics
Organ Size
Permeability
protein transfer
Protein Transport
Rats
Rats, Sprague-Dawley
Sucrose - pharmacokinetics
title Blood-CSF barrier function in the rat embryo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood-CSF%20barrier%20function%20in%20the%20rat%20embryo&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Johansson,%20P.%20A.&rft.date=2006-07&rft.volume=24&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2006.04904.x&rft_dat=%3Cproquest_cross%3E68704195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19326358&rft_id=info:pmid/16800861&rfr_iscdi=true