Strain and mechanical behavior measurements of soft tissues with digital speckle method

Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as ful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Biomedical Optics 2005-05, Vol.10 (3), p.034021-034027
Hauptverfasser: Zhang, J, Jin, G. C, Meng, L. B, Jian, L. H, Wang, A. Y, Lu, S. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 034027
container_issue 3
container_start_page 034021
container_title Journal of Biomedical Optics
container_volume 10
creator Zhang, J
Jin, G. C
Meng, L. B
Jian, L. H
Wang, A. Y
Lu, S. B
description Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as full field, noncontact, and real time. We focus on the use of an improved digital speckle correlation method (DSCM) and time-sequence electric speckle pattern interferometry (TSESPI) to noninvasively obtain continual strain measurements on cartilage and vessel tissues. Monoaxial tensile experiments are well designed and performed under constant temperature and the necessary humidity with smart sensors. Mechanical behaviors such as the tensile modulus and Poisson ratio of specimens are extracted based on the deformation information. A comparison of the advantages and the disadvantages of these techniques as well as some problems concerning strain measurements in soft tissues are also discussed. ©
doi_str_mv 10.1117/1.1895185
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68700004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68700004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-9778f7f0dce4019894e02bff8972573322e52a3a58360598b014e65c0a1ae02d3</originalsourceid><addsrcrecordid>eNqFkEtPwzAMxyME4n3gC6CekDgU7KRJkyNMPIU0JEAcq6x1WaCP0WQgvj0Zm-CIL379bNl_xg4QThAxP8UT1EailmtsG6WClHON6zEGLVKhlN5iO96_AoBWRm2yLVScG6XkNnt-CIN1XWK7KmmpnNrOlbZJJjS1H64fYs36-UAtdcEnfZ34vg5JcN7PySefLkyTyr24EEf8jMq3huJEmPbVHtuobeNpf-V32dPlxePoOr0bX92Mzu7SMlM8pCbPdZ3XUJWUARptMgI-qWttci5zITgnya2wUgsF0ugJYEZKlmDRRrISu-xouXc29O_xplC0zpfUNLajfu4LpfP4NmT_gtwYKbhZgMdLsBx67weqi9ngWjt8FQjFQu4Ci5XckT1cLZ1PWqr-yJW-EeBLwM8c_bZvz8f3l-PFXQg_JkBkwJcJim9Weocz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29953294</pqid></control><display><type>article</type><title>Strain and mechanical behavior measurements of soft tissues with digital speckle method</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, J ; Jin, G. C ; Meng, L. B ; Jian, L. H ; Wang, A. Y ; Lu, S. B</creator><creatorcontrib>Zhang, J ; Jin, G. C ; Meng, L. B ; Jian, L. H ; Wang, A. Y ; Lu, S. B</creatorcontrib><description>Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as full field, noncontact, and real time. We focus on the use of an improved digital speckle correlation method (DSCM) and time-sequence electric speckle pattern interferometry (TSESPI) to noninvasively obtain continual strain measurements on cartilage and vessel tissues. Monoaxial tensile experiments are well designed and performed under constant temperature and the necessary humidity with smart sensors. Mechanical behaviors such as the tensile modulus and Poisson ratio of specimens are extracted based on the deformation information. A comparison of the advantages and the disadvantages of these techniques as well as some problems concerning strain measurements in soft tissues are also discussed. ©</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.1895185</identifier><identifier>PMID: 16229665</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Biomechanical Phenomena - instrumentation ; Biomechanical Phenomena - methods ; Cartilage, Articular - cytology ; Cartilage, Articular - physiology ; digital speckle correlation method ; Elasticity ; electric speckle pattern interferometry ; Equipment Design ; Equipment Failure Analysis ; In Vitro Techniques ; Interferometry - instrumentation ; Interferometry - methods ; Physical Stimulation - instrumentation ; Physical Stimulation - methods ; Rabbits ; Signal Processing, Computer-Assisted - instrumentation ; smart sensor ; soft tissue ; Stress, Mechanical ; Swine ; Tensile Strength - physiology ; time sequence ; Vena Cava, Inferior - cytology ; Vena Cava, Inferior - physiology</subject><ispartof>Journal of Biomedical Optics, 2005-05, Vol.10 (3), p.034021-034027</ispartof><rights>2005 Society of Photo-Optical Instrumentation Engineers</rights><rights>2005 Society of Photo-Optical Instrumentation Engineers.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-9778f7f0dce4019894e02bff8972573322e52a3a58360598b014e65c0a1ae02d3</citedby><cites>FETCH-LOGICAL-c462t-9778f7f0dce4019894e02bff8972573322e52a3a58360598b014e65c0a1ae02d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16229665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Jin, G. C</creatorcontrib><creatorcontrib>Meng, L. B</creatorcontrib><creatorcontrib>Jian, L. H</creatorcontrib><creatorcontrib>Wang, A. Y</creatorcontrib><creatorcontrib>Lu, S. B</creatorcontrib><title>Strain and mechanical behavior measurements of soft tissues with digital speckle method</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as full field, noncontact, and real time. We focus on the use of an improved digital speckle correlation method (DSCM) and time-sequence electric speckle pattern interferometry (TSESPI) to noninvasively obtain continual strain measurements on cartilage and vessel tissues. Monoaxial tensile experiments are well designed and performed under constant temperature and the necessary humidity with smart sensors. Mechanical behaviors such as the tensile modulus and Poisson ratio of specimens are extracted based on the deformation information. A comparison of the advantages and the disadvantages of these techniques as well as some problems concerning strain measurements in soft tissues are also discussed. ©</description><subject>Animals</subject><subject>Biomechanical Phenomena - instrumentation</subject><subject>Biomechanical Phenomena - methods</subject><subject>Cartilage, Articular - cytology</subject><subject>Cartilage, Articular - physiology</subject><subject>digital speckle correlation method</subject><subject>Elasticity</subject><subject>electric speckle pattern interferometry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>In Vitro Techniques</subject><subject>Interferometry - instrumentation</subject><subject>Interferometry - methods</subject><subject>Physical Stimulation - instrumentation</subject><subject>Physical Stimulation - methods</subject><subject>Rabbits</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>smart sensor</subject><subject>soft tissue</subject><subject>Stress, Mechanical</subject><subject>Swine</subject><subject>Tensile Strength - physiology</subject><subject>time sequence</subject><subject>Vena Cava, Inferior - cytology</subject><subject>Vena Cava, Inferior - physiology</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtPwzAMxyME4n3gC6CekDgU7KRJkyNMPIU0JEAcq6x1WaCP0WQgvj0Zm-CIL379bNl_xg4QThAxP8UT1EailmtsG6WClHON6zEGLVKhlN5iO96_AoBWRm2yLVScG6XkNnt-CIN1XWK7KmmpnNrOlbZJJjS1H64fYs36-UAtdcEnfZ34vg5JcN7PySefLkyTyr24EEf8jMq3huJEmPbVHtuobeNpf-V32dPlxePoOr0bX92Mzu7SMlM8pCbPdZ3XUJWUARptMgI-qWttci5zITgnya2wUgsF0ugJYEZKlmDRRrISu-xouXc29O_xplC0zpfUNLajfu4LpfP4NmT_gtwYKbhZgMdLsBx67weqi9ngWjt8FQjFQu4Ci5XckT1cLZ1PWqr-yJW-EeBLwM8c_bZvz8f3l-PFXQg_JkBkwJcJim9Weocz</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Zhang, J</creator><creator>Jin, G. C</creator><creator>Meng, L. B</creator><creator>Jian, L. H</creator><creator>Wang, A. Y</creator><creator>Lu, S. B</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Strain and mechanical behavior measurements of soft tissues with digital speckle method</title><author>Zhang, J ; Jin, G. C ; Meng, L. B ; Jian, L. H ; Wang, A. Y ; Lu, S. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-9778f7f0dce4019894e02bff8972573322e52a3a58360598b014e65c0a1ae02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena - instrumentation</topic><topic>Biomechanical Phenomena - methods</topic><topic>Cartilage, Articular - cytology</topic><topic>Cartilage, Articular - physiology</topic><topic>digital speckle correlation method</topic><topic>Elasticity</topic><topic>electric speckle pattern interferometry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>In Vitro Techniques</topic><topic>Interferometry - instrumentation</topic><topic>Interferometry - methods</topic><topic>Physical Stimulation - instrumentation</topic><topic>Physical Stimulation - methods</topic><topic>Rabbits</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>smart sensor</topic><topic>soft tissue</topic><topic>Stress, Mechanical</topic><topic>Swine</topic><topic>Tensile Strength - physiology</topic><topic>time sequence</topic><topic>Vena Cava, Inferior - cytology</topic><topic>Vena Cava, Inferior - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Jin, G. C</creatorcontrib><creatorcontrib>Meng, L. B</creatorcontrib><creatorcontrib>Jian, L. H</creatorcontrib><creatorcontrib>Wang, A. Y</creatorcontrib><creatorcontrib>Lu, S. B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, J</au><au>Jin, G. C</au><au>Meng, L. B</au><au>Jian, L. H</au><au>Wang, A. Y</au><au>Lu, S. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain and mechanical behavior measurements of soft tissues with digital speckle method</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>10</volume><issue>3</issue><spage>034021</spage><epage>034027</epage><pages>034021-034027</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as full field, noncontact, and real time. We focus on the use of an improved digital speckle correlation method (DSCM) and time-sequence electric speckle pattern interferometry (TSESPI) to noninvasively obtain continual strain measurements on cartilage and vessel tissues. Monoaxial tensile experiments are well designed and performed under constant temperature and the necessary humidity with smart sensors. Mechanical behaviors such as the tensile modulus and Poisson ratio of specimens are extracted based on the deformation information. A comparison of the advantages and the disadvantages of these techniques as well as some problems concerning strain measurements in soft tissues are also discussed. ©</abstract><cop>United States</cop><pmid>16229665</pmid><doi>10.1117/1.1895185</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of Biomedical Optics, 2005-05, Vol.10 (3), p.034021-034027
issn 1083-3668
1560-2281
language eng
recordid cdi_proquest_miscellaneous_68700004
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Biomechanical Phenomena - instrumentation
Biomechanical Phenomena - methods
Cartilage, Articular - cytology
Cartilage, Articular - physiology
digital speckle correlation method
Elasticity
electric speckle pattern interferometry
Equipment Design
Equipment Failure Analysis
In Vitro Techniques
Interferometry - instrumentation
Interferometry - methods
Physical Stimulation - instrumentation
Physical Stimulation - methods
Rabbits
Signal Processing, Computer-Assisted - instrumentation
smart sensor
soft tissue
Stress, Mechanical
Swine
Tensile Strength - physiology
time sequence
Vena Cava, Inferior - cytology
Vena Cava, Inferior - physiology
title Strain and mechanical behavior measurements of soft tissues with digital speckle method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20and%20mechanical%20behavior%20measurements%20of%20soft%20tissues%20with%20digital%20speckle%20method&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Zhang,%20J&rft.date=2005-05-01&rft.volume=10&rft.issue=3&rft.spage=034021&rft.epage=034027&rft.pages=034021-034027&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.1895185&rft_dat=%3Cproquest_cross%3E68700004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29953294&rft_id=info:pmid/16229665&rfr_iscdi=true