Strain and mechanical behavior measurements of soft tissues with digital speckle method
Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as ful...
Gespeichert in:
Veröffentlicht in: | Journal of Biomedical Optics 2005-05, Vol.10 (3), p.034021-034027 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 034027 |
---|---|
container_issue | 3 |
container_start_page | 034021 |
container_title | Journal of Biomedical Optics |
container_volume | 10 |
creator | Zhang, J Jin, G. C Meng, L. B Jian, L. H Wang, A. Y Lu, S. B |
description | Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as full field, noncontact, and real time. We focus on the use of an improved digital speckle correlation method (DSCM) and time-sequence electric speckle pattern interferometry (TSESPI) to noninvasively obtain continual strain measurements on cartilage and vessel tissues. Monoaxial tensile experiments are well designed and performed under constant temperature and the necessary humidity with smart sensors. Mechanical behaviors such as the tensile modulus and Poisson ratio of specimens are extracted based on the deformation information. A comparison of the advantages and the disadvantages of these techniques as well as some problems concerning strain measurements in soft tissues are also discussed. © |
doi_str_mv | 10.1117/1.1895185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68700004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68700004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-9778f7f0dce4019894e02bff8972573322e52a3a58360598b014e65c0a1ae02d3</originalsourceid><addsrcrecordid>eNqFkEtPwzAMxyME4n3gC6CekDgU7KRJkyNMPIU0JEAcq6x1WaCP0WQgvj0Zm-CIL379bNl_xg4QThAxP8UT1EailmtsG6WClHON6zEGLVKhlN5iO96_AoBWRm2yLVScG6XkNnt-CIN1XWK7KmmpnNrOlbZJJjS1H64fYs36-UAtdcEnfZ34vg5JcN7PySefLkyTyr24EEf8jMq3huJEmPbVHtuobeNpf-V32dPlxePoOr0bX92Mzu7SMlM8pCbPdZ3XUJWUARptMgI-qWttci5zITgnya2wUgsF0ugJYEZKlmDRRrISu-xouXc29O_xplC0zpfUNLajfu4LpfP4NmT_gtwYKbhZgMdLsBx67weqi9ngWjt8FQjFQu4Ci5XckT1cLZ1PWqr-yJW-EeBLwM8c_bZvz8f3l-PFXQg_JkBkwJcJim9Weocz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29953294</pqid></control><display><type>article</type><title>Strain and mechanical behavior measurements of soft tissues with digital speckle method</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, J ; Jin, G. C ; Meng, L. B ; Jian, L. H ; Wang, A. Y ; Lu, S. B</creator><creatorcontrib>Zhang, J ; Jin, G. C ; Meng, L. B ; Jian, L. H ; Wang, A. Y ; Lu, S. B</creatorcontrib><description>Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as full field, noncontact, and real time. We focus on the use of an improved digital speckle correlation method (DSCM) and time-sequence electric speckle pattern interferometry (TSESPI) to noninvasively obtain continual strain measurements on cartilage and vessel tissues. Monoaxial tensile experiments are well designed and performed under constant temperature and the necessary humidity with smart sensors. Mechanical behaviors such as the tensile modulus and Poisson ratio of specimens are extracted based on the deformation information. A comparison of the advantages and the disadvantages of these techniques as well as some problems concerning strain measurements in soft tissues are also discussed. ©</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.1895185</identifier><identifier>PMID: 16229665</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Biomechanical Phenomena - instrumentation ; Biomechanical Phenomena - methods ; Cartilage, Articular - cytology ; Cartilage, Articular - physiology ; digital speckle correlation method ; Elasticity ; electric speckle pattern interferometry ; Equipment Design ; Equipment Failure Analysis ; In Vitro Techniques ; Interferometry - instrumentation ; Interferometry - methods ; Physical Stimulation - instrumentation ; Physical Stimulation - methods ; Rabbits ; Signal Processing, Computer-Assisted - instrumentation ; smart sensor ; soft tissue ; Stress, Mechanical ; Swine ; Tensile Strength - physiology ; time sequence ; Vena Cava, Inferior - cytology ; Vena Cava, Inferior - physiology</subject><ispartof>Journal of Biomedical Optics, 2005-05, Vol.10 (3), p.034021-034027</ispartof><rights>2005 Society of Photo-Optical Instrumentation Engineers</rights><rights>2005 Society of Photo-Optical Instrumentation Engineers.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-9778f7f0dce4019894e02bff8972573322e52a3a58360598b014e65c0a1ae02d3</citedby><cites>FETCH-LOGICAL-c462t-9778f7f0dce4019894e02bff8972573322e52a3a58360598b014e65c0a1ae02d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16229665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Jin, G. C</creatorcontrib><creatorcontrib>Meng, L. B</creatorcontrib><creatorcontrib>Jian, L. H</creatorcontrib><creatorcontrib>Wang, A. Y</creatorcontrib><creatorcontrib>Lu, S. B</creatorcontrib><title>Strain and mechanical behavior measurements of soft tissues with digital speckle method</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as full field, noncontact, and real time. We focus on the use of an improved digital speckle correlation method (DSCM) and time-sequence electric speckle pattern interferometry (TSESPI) to noninvasively obtain continual strain measurements on cartilage and vessel tissues. Monoaxial tensile experiments are well designed and performed under constant temperature and the necessary humidity with smart sensors. Mechanical behaviors such as the tensile modulus and Poisson ratio of specimens are extracted based on the deformation information. A comparison of the advantages and the disadvantages of these techniques as well as some problems concerning strain measurements in soft tissues are also discussed. ©</description><subject>Animals</subject><subject>Biomechanical Phenomena - instrumentation</subject><subject>Biomechanical Phenomena - methods</subject><subject>Cartilage, Articular - cytology</subject><subject>Cartilage, Articular - physiology</subject><subject>digital speckle correlation method</subject><subject>Elasticity</subject><subject>electric speckle pattern interferometry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>In Vitro Techniques</subject><subject>Interferometry - instrumentation</subject><subject>Interferometry - methods</subject><subject>Physical Stimulation - instrumentation</subject><subject>Physical Stimulation - methods</subject><subject>Rabbits</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>smart sensor</subject><subject>soft tissue</subject><subject>Stress, Mechanical</subject><subject>Swine</subject><subject>Tensile Strength - physiology</subject><subject>time sequence</subject><subject>Vena Cava, Inferior - cytology</subject><subject>Vena Cava, Inferior - physiology</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtPwzAMxyME4n3gC6CekDgU7KRJkyNMPIU0JEAcq6x1WaCP0WQgvj0Zm-CIL379bNl_xg4QThAxP8UT1EailmtsG6WClHON6zEGLVKhlN5iO96_AoBWRm2yLVScG6XkNnt-CIN1XWK7KmmpnNrOlbZJJjS1H64fYs36-UAtdcEnfZ34vg5JcN7PySefLkyTyr24EEf8jMq3huJEmPbVHtuobeNpf-V32dPlxePoOr0bX92Mzu7SMlM8pCbPdZ3XUJWUARptMgI-qWttci5zITgnya2wUgsF0ugJYEZKlmDRRrISu-xouXc29O_xplC0zpfUNLajfu4LpfP4NmT_gtwYKbhZgMdLsBx67weqi9ngWjt8FQjFQu4Ci5XckT1cLZ1PWqr-yJW-EeBLwM8c_bZvz8f3l-PFXQg_JkBkwJcJim9Weocz</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Zhang, J</creator><creator>Jin, G. C</creator><creator>Meng, L. B</creator><creator>Jian, L. H</creator><creator>Wang, A. Y</creator><creator>Lu, S. B</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Strain and mechanical behavior measurements of soft tissues with digital speckle method</title><author>Zhang, J ; Jin, G. C ; Meng, L. B ; Jian, L. H ; Wang, A. Y ; Lu, S. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-9778f7f0dce4019894e02bff8972573322e52a3a58360598b014e65c0a1ae02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena - instrumentation</topic><topic>Biomechanical Phenomena - methods</topic><topic>Cartilage, Articular - cytology</topic><topic>Cartilage, Articular - physiology</topic><topic>digital speckle correlation method</topic><topic>Elasticity</topic><topic>electric speckle pattern interferometry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>In Vitro Techniques</topic><topic>Interferometry - instrumentation</topic><topic>Interferometry - methods</topic><topic>Physical Stimulation - instrumentation</topic><topic>Physical Stimulation - methods</topic><topic>Rabbits</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>smart sensor</topic><topic>soft tissue</topic><topic>Stress, Mechanical</topic><topic>Swine</topic><topic>Tensile Strength - physiology</topic><topic>time sequence</topic><topic>Vena Cava, Inferior - cytology</topic><topic>Vena Cava, Inferior - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Jin, G. C</creatorcontrib><creatorcontrib>Meng, L. B</creatorcontrib><creatorcontrib>Jian, L. H</creatorcontrib><creatorcontrib>Wang, A. Y</creatorcontrib><creatorcontrib>Lu, S. B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, J</au><au>Jin, G. C</au><au>Meng, L. B</au><au>Jian, L. H</au><au>Wang, A. Y</au><au>Lu, S. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain and mechanical behavior measurements of soft tissues with digital speckle method</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>10</volume><issue>3</issue><spage>034021</spage><epage>034027</epage><pages>034021-034027</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as full field, noncontact, and real time. We focus on the use of an improved digital speckle correlation method (DSCM) and time-sequence electric speckle pattern interferometry (TSESPI) to noninvasively obtain continual strain measurements on cartilage and vessel tissues. Monoaxial tensile experiments are well designed and performed under constant temperature and the necessary humidity with smart sensors. Mechanical behaviors such as the tensile modulus and Poisson ratio of specimens are extracted based on the deformation information. A comparison of the advantages and the disadvantages of these techniques as well as some problems concerning strain measurements in soft tissues are also discussed. ©</abstract><cop>United States</cop><pmid>16229665</pmid><doi>10.1117/1.1895185</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-3668 |
ispartof | Journal of Biomedical Optics, 2005-05, Vol.10 (3), p.034021-034027 |
issn | 1083-3668 1560-2281 |
language | eng |
recordid | cdi_proquest_miscellaneous_68700004 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Biomechanical Phenomena - instrumentation Biomechanical Phenomena - methods Cartilage, Articular - cytology Cartilage, Articular - physiology digital speckle correlation method Elasticity electric speckle pattern interferometry Equipment Design Equipment Failure Analysis In Vitro Techniques Interferometry - instrumentation Interferometry - methods Physical Stimulation - instrumentation Physical Stimulation - methods Rabbits Signal Processing, Computer-Assisted - instrumentation smart sensor soft tissue Stress, Mechanical Swine Tensile Strength - physiology time sequence Vena Cava, Inferior - cytology Vena Cava, Inferior - physiology |
title | Strain and mechanical behavior measurements of soft tissues with digital speckle method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20and%20mechanical%20behavior%20measurements%20of%20soft%20tissues%20with%20digital%20speckle%20method&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Zhang,%20J&rft.date=2005-05-01&rft.volume=10&rft.issue=3&rft.spage=034021&rft.epage=034027&rft.pages=034021-034027&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.1895185&rft_dat=%3Cproquest_cross%3E68700004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29953294&rft_id=info:pmid/16229665&rfr_iscdi=true |