Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold
To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering. Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by...
Gespeichert in:
Veröffentlicht in: | Investigative ophthalmology & visual science 2006-08, Vol.47 (8), p.3311-3317 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3317 |
---|---|
container_issue | 8 |
container_start_page | 3311 |
container_title | Investigative ophthalmology & visual science |
container_volume | 47 |
creator | Alaminos, Miguel Sanchez-Quevedo, Maria Del Carmen Munoz-Avila, Jose Ignacio Serrano, Daniel Medialdea, Santiago Carreras, Ignacio Campos, Antonio |
description | To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering.
Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by RT-PCR for the genes COL8 and KRT12. To develop an organotypic rabbit cornea equivalent, we used a sequential culture technique on porous culture inserts. First, endothelial cells were seeded on the base of the inserts. Then, a stroma substitute made of cultured keratocytes entrapped in a gel of human fibrin and 0.1% agarose was developed. Finally, cultured corneal epithelial cells were grown on the surface of the scaffold. Stratification of the epithelial cell layer was promoted by using an air-liquid culture technique. Corneal substitutes were analyzed by light and electron microscopy.
All three types of corneal cells were efficiently cultured in the laboratory, expanded, and used to construct a full-thickness cornea substitute. Gene expression analyses confirmed that cultured endothelial cells expressed the COL8 gene, whereas epithelial cells expressed KRT12. Microscopic evaluation of the cornea substitutes demonstrated that epithelial cells tended to form a normal stratified layer and that stromal keratocytes proliferated rapidly in the stromal substitute. The endothelial monolayer exhibited a pattern similar to a normal corneal endothelium.
These findings suggest that development of a full-thickness rabbit cornea model is possible in the laboratory and may open new avenues for research. |
doi_str_mv | 10.1167/iovs.05-1647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68696357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68696357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-5b7e2f335fb73b06c05450720b9ce252633424faab60dfbb2b4e2d2f1f5018b73</originalsourceid><addsrcrecordid>eNpFkE1rGzEQhkVoid0kt57LXtpT15nR5_poTNMWDIU4OQtJlhyV3ZUr7cbk33dNDD4Nwzzz8vIQ8hlhgSjVfUyvZQGiRsnVFZmjELQWqmEfyByQyxo48Bn5VMpfAIpI4ZrMUDZKsaWck-069WXIoxti6qsUKlOtU3do_eCrR2NtHKY9995U29GWIQ7jdHgusd9P5EO0Ofb1am9yKr7aOhNCane35GMwbfF353lDnh9-PK1_1Zs_P3-vV5vacZRDLazyNDAmglXMgnQguABFwS6dp4JKxjjlwRgrYRespZZ7uqMBgwBspp8b8u0995DTv9GXQXexON-2pvdpLFo2cimZOIHf30E39SzZB33IsTP5TSPok0R9kqhB6JPECf9yzh1t53cX-GxtAr6eAVOcaUM2vYvlwjWAdEnppeBL3L8cY_a6dKZtp1jUx-ORK91oxhDZf4EGh2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68696357</pqid></control><display><type>article</type><title>Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alaminos, Miguel ; Sanchez-Quevedo, Maria Del Carmen ; Munoz-Avila, Jose Ignacio ; Serrano, Daniel ; Medialdea, Santiago ; Carreras, Ignacio ; Campos, Antonio</creator><creatorcontrib>Alaminos, Miguel ; Sanchez-Quevedo, Maria Del Carmen ; Munoz-Avila, Jose Ignacio ; Serrano, Daniel ; Medialdea, Santiago ; Carreras, Ignacio ; Campos, Antonio</creatorcontrib><description>To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering.
Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by RT-PCR for the genes COL8 and KRT12. To develop an organotypic rabbit cornea equivalent, we used a sequential culture technique on porous culture inserts. First, endothelial cells were seeded on the base of the inserts. Then, a stroma substitute made of cultured keratocytes entrapped in a gel of human fibrin and 0.1% agarose was developed. Finally, cultured corneal epithelial cells were grown on the surface of the scaffold. Stratification of the epithelial cell layer was promoted by using an air-liquid culture technique. Corneal substitutes were analyzed by light and electron microscopy.
All three types of corneal cells were efficiently cultured in the laboratory, expanded, and used to construct a full-thickness cornea substitute. Gene expression analyses confirmed that cultured endothelial cells expressed the COL8 gene, whereas epithelial cells expressed KRT12. Microscopic evaluation of the cornea substitutes demonstrated that epithelial cells tended to form a normal stratified layer and that stromal keratocytes proliferated rapidly in the stromal substitute. The endothelial monolayer exhibited a pattern similar to a normal corneal endothelium.
These findings suggest that development of a full-thickness rabbit cornea model is possible in the laboratory and may open new avenues for research.</description><identifier>ISSN: 0146-0404</identifier><identifier>ISSN: 1552-5783</identifier><identifier>EISSN: 1552-5783</identifier><identifier>DOI: 10.1167/iovs.05-1647</identifier><identifier>PMID: 16877396</identifier><identifier>CODEN: IOVSDA</identifier><language>eng</language><publisher>Rockville, MD: ARVO</publisher><subject>Animals ; Artificial Organs ; Biological and medical sciences ; Cells, Cultured ; Collagen Type VIII - genetics ; Cornea - cytology ; Cornea - physiology ; Corneal Stroma - cytology ; Corneal Stroma - metabolism ; Endothelium, Corneal - cytology ; Endothelium, Corneal - metabolism ; Eye and associated structures. Visual pathways and centers. Vision ; Fibrin ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Immunoenzyme Techniques ; Keratin-12 ; Keratins - genetics ; Membranes, Artificial ; Microscopy, Electron, Scanning ; Rabbits ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - metabolism ; Sepharose ; Tissue Engineering - methods ; Vertebrates: nervous system and sense organs</subject><ispartof>Investigative ophthalmology & visual science, 2006-08, Vol.47 (8), p.3311-3317</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-5b7e2f335fb73b06c05450720b9ce252633424faab60dfbb2b4e2d2f1f5018b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18012922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16877396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alaminos, Miguel</creatorcontrib><creatorcontrib>Sanchez-Quevedo, Maria Del Carmen</creatorcontrib><creatorcontrib>Munoz-Avila, Jose Ignacio</creatorcontrib><creatorcontrib>Serrano, Daniel</creatorcontrib><creatorcontrib>Medialdea, Santiago</creatorcontrib><creatorcontrib>Carreras, Ignacio</creatorcontrib><creatorcontrib>Campos, Antonio</creatorcontrib><title>Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold</title><title>Investigative ophthalmology & visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering.
Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by RT-PCR for the genes COL8 and KRT12. To develop an organotypic rabbit cornea equivalent, we used a sequential culture technique on porous culture inserts. First, endothelial cells were seeded on the base of the inserts. Then, a stroma substitute made of cultured keratocytes entrapped in a gel of human fibrin and 0.1% agarose was developed. Finally, cultured corneal epithelial cells were grown on the surface of the scaffold. Stratification of the epithelial cell layer was promoted by using an air-liquid culture technique. Corneal substitutes were analyzed by light and electron microscopy.
All three types of corneal cells were efficiently cultured in the laboratory, expanded, and used to construct a full-thickness cornea substitute. Gene expression analyses confirmed that cultured endothelial cells expressed the COL8 gene, whereas epithelial cells expressed KRT12. Microscopic evaluation of the cornea substitutes demonstrated that epithelial cells tended to form a normal stratified layer and that stromal keratocytes proliferated rapidly in the stromal substitute. The endothelial monolayer exhibited a pattern similar to a normal corneal endothelium.
These findings suggest that development of a full-thickness rabbit cornea model is possible in the laboratory and may open new avenues for research.</description><subject>Animals</subject><subject>Artificial Organs</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Collagen Type VIII - genetics</subject><subject>Cornea - cytology</subject><subject>Cornea - physiology</subject><subject>Corneal Stroma - cytology</subject><subject>Corneal Stroma - metabolism</subject><subject>Endothelium, Corneal - cytology</subject><subject>Endothelium, Corneal - metabolism</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fibrin</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Immunoenzyme Techniques</subject><subject>Keratin-12</subject><subject>Keratins - genetics</subject><subject>Membranes, Artificial</subject><subject>Microscopy, Electron, Scanning</subject><subject>Rabbits</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>Sepharose</subject><subject>Tissue Engineering - methods</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0146-0404</issn><issn>1552-5783</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1rGzEQhkVoid0kt57LXtpT15nR5_poTNMWDIU4OQtJlhyV3ZUr7cbk33dNDD4Nwzzz8vIQ8hlhgSjVfUyvZQGiRsnVFZmjELQWqmEfyByQyxo48Bn5VMpfAIpI4ZrMUDZKsaWck-069WXIoxti6qsUKlOtU3do_eCrR2NtHKY9995U29GWIQ7jdHgusd9P5EO0Ofb1am9yKr7aOhNCane35GMwbfF353lDnh9-PK1_1Zs_P3-vV5vacZRDLazyNDAmglXMgnQguABFwS6dp4JKxjjlwRgrYRespZZ7uqMBgwBspp8b8u0995DTv9GXQXexON-2pvdpLFo2cimZOIHf30E39SzZB33IsTP5TSPok0R9kqhB6JPECf9yzh1t53cX-GxtAr6eAVOcaUM2vYvlwjWAdEnppeBL3L8cY_a6dKZtp1jUx-ORK91oxhDZf4EGh2A</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Alaminos, Miguel</creator><creator>Sanchez-Quevedo, Maria Del Carmen</creator><creator>Munoz-Avila, Jose Ignacio</creator><creator>Serrano, Daniel</creator><creator>Medialdea, Santiago</creator><creator>Carreras, Ignacio</creator><creator>Campos, Antonio</creator><general>ARVO</general><general>Association for Research in Vision and Ophtalmology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold</title><author>Alaminos, Miguel ; Sanchez-Quevedo, Maria Del Carmen ; Munoz-Avila, Jose Ignacio ; Serrano, Daniel ; Medialdea, Santiago ; Carreras, Ignacio ; Campos, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-5b7e2f335fb73b06c05450720b9ce252633424faab60dfbb2b4e2d2f1f5018b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Artificial Organs</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Collagen Type VIII - genetics</topic><topic>Cornea - cytology</topic><topic>Cornea - physiology</topic><topic>Corneal Stroma - cytology</topic><topic>Corneal Stroma - metabolism</topic><topic>Endothelium, Corneal - cytology</topic><topic>Endothelium, Corneal - metabolism</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fibrin</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Immunoenzyme Techniques</topic><topic>Keratin-12</topic><topic>Keratins - genetics</topic><topic>Membranes, Artificial</topic><topic>Microscopy, Electron, Scanning</topic><topic>Rabbits</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>Sepharose</topic><topic>Tissue Engineering - methods</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alaminos, Miguel</creatorcontrib><creatorcontrib>Sanchez-Quevedo, Maria Del Carmen</creatorcontrib><creatorcontrib>Munoz-Avila, Jose Ignacio</creatorcontrib><creatorcontrib>Serrano, Daniel</creatorcontrib><creatorcontrib>Medialdea, Santiago</creatorcontrib><creatorcontrib>Carreras, Ignacio</creatorcontrib><creatorcontrib>Campos, Antonio</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Investigative ophthalmology & visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaminos, Miguel</au><au>Sanchez-Quevedo, Maria Del Carmen</au><au>Munoz-Avila, Jose Ignacio</au><au>Serrano, Daniel</au><au>Medialdea, Santiago</au><au>Carreras, Ignacio</au><au>Campos, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold</atitle><jtitle>Investigative ophthalmology & visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>47</volume><issue>8</issue><spage>3311</spage><epage>3317</epage><pages>3311-3317</pages><issn>0146-0404</issn><issn>1552-5783</issn><eissn>1552-5783</eissn><coden>IOVSDA</coden><abstract>To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering.
Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by RT-PCR for the genes COL8 and KRT12. To develop an organotypic rabbit cornea equivalent, we used a sequential culture technique on porous culture inserts. First, endothelial cells were seeded on the base of the inserts. Then, a stroma substitute made of cultured keratocytes entrapped in a gel of human fibrin and 0.1% agarose was developed. Finally, cultured corneal epithelial cells were grown on the surface of the scaffold. Stratification of the epithelial cell layer was promoted by using an air-liquid culture technique. Corneal substitutes were analyzed by light and electron microscopy.
All three types of corneal cells were efficiently cultured in the laboratory, expanded, and used to construct a full-thickness cornea substitute. Gene expression analyses confirmed that cultured endothelial cells expressed the COL8 gene, whereas epithelial cells expressed KRT12. Microscopic evaluation of the cornea substitutes demonstrated that epithelial cells tended to form a normal stratified layer and that stromal keratocytes proliferated rapidly in the stromal substitute. The endothelial monolayer exhibited a pattern similar to a normal corneal endothelium.
These findings suggest that development of a full-thickness rabbit cornea model is possible in the laboratory and may open new avenues for research.</abstract><cop>Rockville, MD</cop><pub>ARVO</pub><pmid>16877396</pmid><doi>10.1167/iovs.05-1647</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-0404 |
ispartof | Investigative ophthalmology & visual science, 2006-08, Vol.47 (8), p.3311-3317 |
issn | 0146-0404 1552-5783 1552-5783 |
language | eng |
recordid | cdi_proquest_miscellaneous_68696357 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Artificial Organs Biological and medical sciences Cells, Cultured Collagen Type VIII - genetics Cornea - cytology Cornea - physiology Corneal Stroma - cytology Corneal Stroma - metabolism Endothelium, Corneal - cytology Endothelium, Corneal - metabolism Eye and associated structures. Visual pathways and centers. Vision Fibrin Fibroblasts - cytology Fibroblasts - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation Immunoenzyme Techniques Keratin-12 Keratins - genetics Membranes, Artificial Microscopy, Electron, Scanning Rabbits Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - metabolism Sepharose Tissue Engineering - methods Vertebrates: nervous system and sense organs |
title | Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Complete%20Rabbit%20Cornea%20Substitute%20Using%20a%20Fibrin-Agarose%20Scaffold&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Alaminos,%20Miguel&rft.date=2006-08-01&rft.volume=47&rft.issue=8&rft.spage=3311&rft.epage=3317&rft.pages=3311-3317&rft.issn=0146-0404&rft.eissn=1552-5783&rft.coden=IOVSDA&rft_id=info:doi/10.1167/iovs.05-1647&rft_dat=%3Cproquest_cross%3E68696357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68696357&rft_id=info:pmid/16877396&rfr_iscdi=true |