Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold

To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering. Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 2006-08, Vol.47 (8), p.3311-3317
Hauptverfasser: Alaminos, Miguel, Sanchez-Quevedo, Maria Del Carmen, Munoz-Avila, Jose Ignacio, Serrano, Daniel, Medialdea, Santiago, Carreras, Ignacio, Campos, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3317
container_issue 8
container_start_page 3311
container_title Investigative ophthalmology & visual science
container_volume 47
creator Alaminos, Miguel
Sanchez-Quevedo, Maria Del Carmen
Munoz-Avila, Jose Ignacio
Serrano, Daniel
Medialdea, Santiago
Carreras, Ignacio
Campos, Antonio
description To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering. Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by RT-PCR for the genes COL8 and KRT12. To develop an organotypic rabbit cornea equivalent, we used a sequential culture technique on porous culture inserts. First, endothelial cells were seeded on the base of the inserts. Then, a stroma substitute made of cultured keratocytes entrapped in a gel of human fibrin and 0.1% agarose was developed. Finally, cultured corneal epithelial cells were grown on the surface of the scaffold. Stratification of the epithelial cell layer was promoted by using an air-liquid culture technique. Corneal substitutes were analyzed by light and electron microscopy. All three types of corneal cells were efficiently cultured in the laboratory, expanded, and used to construct a full-thickness cornea substitute. Gene expression analyses confirmed that cultured endothelial cells expressed the COL8 gene, whereas epithelial cells expressed KRT12. Microscopic evaluation of the cornea substitutes demonstrated that epithelial cells tended to form a normal stratified layer and that stromal keratocytes proliferated rapidly in the stromal substitute. The endothelial monolayer exhibited a pattern similar to a normal corneal endothelium. These findings suggest that development of a full-thickness rabbit cornea model is possible in the laboratory and may open new avenues for research.
doi_str_mv 10.1167/iovs.05-1647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68696357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68696357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-5b7e2f335fb73b06c05450720b9ce252633424faab60dfbb2b4e2d2f1f5018b73</originalsourceid><addsrcrecordid>eNpFkE1rGzEQhkVoid0kt57LXtpT15nR5_poTNMWDIU4OQtJlhyV3ZUr7cbk33dNDD4Nwzzz8vIQ8hlhgSjVfUyvZQGiRsnVFZmjELQWqmEfyByQyxo48Bn5VMpfAIpI4ZrMUDZKsaWck-069WXIoxti6qsUKlOtU3do_eCrR2NtHKY9995U29GWIQ7jdHgusd9P5EO0Ofb1am9yKr7aOhNCane35GMwbfF353lDnh9-PK1_1Zs_P3-vV5vacZRDLazyNDAmglXMgnQguABFwS6dp4JKxjjlwRgrYRespZZ7uqMBgwBspp8b8u0995DTv9GXQXexON-2pvdpLFo2cimZOIHf30E39SzZB33IsTP5TSPok0R9kqhB6JPECf9yzh1t53cX-GxtAr6eAVOcaUM2vYvlwjWAdEnppeBL3L8cY_a6dKZtp1jUx-ORK91oxhDZf4EGh2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68696357</pqid></control><display><type>article</type><title>Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alaminos, Miguel ; Sanchez-Quevedo, Maria Del Carmen ; Munoz-Avila, Jose Ignacio ; Serrano, Daniel ; Medialdea, Santiago ; Carreras, Ignacio ; Campos, Antonio</creator><creatorcontrib>Alaminos, Miguel ; Sanchez-Quevedo, Maria Del Carmen ; Munoz-Avila, Jose Ignacio ; Serrano, Daniel ; Medialdea, Santiago ; Carreras, Ignacio ; Campos, Antonio</creatorcontrib><description>To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering. Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by RT-PCR for the genes COL8 and KRT12. To develop an organotypic rabbit cornea equivalent, we used a sequential culture technique on porous culture inserts. First, endothelial cells were seeded on the base of the inserts. Then, a stroma substitute made of cultured keratocytes entrapped in a gel of human fibrin and 0.1% agarose was developed. Finally, cultured corneal epithelial cells were grown on the surface of the scaffold. Stratification of the epithelial cell layer was promoted by using an air-liquid culture technique. Corneal substitutes were analyzed by light and electron microscopy. All three types of corneal cells were efficiently cultured in the laboratory, expanded, and used to construct a full-thickness cornea substitute. Gene expression analyses confirmed that cultured endothelial cells expressed the COL8 gene, whereas epithelial cells expressed KRT12. Microscopic evaluation of the cornea substitutes demonstrated that epithelial cells tended to form a normal stratified layer and that stromal keratocytes proliferated rapidly in the stromal substitute. The endothelial monolayer exhibited a pattern similar to a normal corneal endothelium. These findings suggest that development of a full-thickness rabbit cornea model is possible in the laboratory and may open new avenues for research.</description><identifier>ISSN: 0146-0404</identifier><identifier>ISSN: 1552-5783</identifier><identifier>EISSN: 1552-5783</identifier><identifier>DOI: 10.1167/iovs.05-1647</identifier><identifier>PMID: 16877396</identifier><identifier>CODEN: IOVSDA</identifier><language>eng</language><publisher>Rockville, MD: ARVO</publisher><subject>Animals ; Artificial Organs ; Biological and medical sciences ; Cells, Cultured ; Collagen Type VIII - genetics ; Cornea - cytology ; Cornea - physiology ; Corneal Stroma - cytology ; Corneal Stroma - metabolism ; Endothelium, Corneal - cytology ; Endothelium, Corneal - metabolism ; Eye and associated structures. Visual pathways and centers. Vision ; Fibrin ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Immunoenzyme Techniques ; Keratin-12 ; Keratins - genetics ; Membranes, Artificial ; Microscopy, Electron, Scanning ; Rabbits ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - metabolism ; Sepharose ; Tissue Engineering - methods ; Vertebrates: nervous system and sense organs</subject><ispartof>Investigative ophthalmology &amp; visual science, 2006-08, Vol.47 (8), p.3311-3317</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-5b7e2f335fb73b06c05450720b9ce252633424faab60dfbb2b4e2d2f1f5018b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18012922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16877396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alaminos, Miguel</creatorcontrib><creatorcontrib>Sanchez-Quevedo, Maria Del Carmen</creatorcontrib><creatorcontrib>Munoz-Avila, Jose Ignacio</creatorcontrib><creatorcontrib>Serrano, Daniel</creatorcontrib><creatorcontrib>Medialdea, Santiago</creatorcontrib><creatorcontrib>Carreras, Ignacio</creatorcontrib><creatorcontrib>Campos, Antonio</creatorcontrib><title>Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold</title><title>Investigative ophthalmology &amp; visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering. Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by RT-PCR for the genes COL8 and KRT12. To develop an organotypic rabbit cornea equivalent, we used a sequential culture technique on porous culture inserts. First, endothelial cells were seeded on the base of the inserts. Then, a stroma substitute made of cultured keratocytes entrapped in a gel of human fibrin and 0.1% agarose was developed. Finally, cultured corneal epithelial cells were grown on the surface of the scaffold. Stratification of the epithelial cell layer was promoted by using an air-liquid culture technique. Corneal substitutes were analyzed by light and electron microscopy. All three types of corneal cells were efficiently cultured in the laboratory, expanded, and used to construct a full-thickness cornea substitute. Gene expression analyses confirmed that cultured endothelial cells expressed the COL8 gene, whereas epithelial cells expressed KRT12. Microscopic evaluation of the cornea substitutes demonstrated that epithelial cells tended to form a normal stratified layer and that stromal keratocytes proliferated rapidly in the stromal substitute. The endothelial monolayer exhibited a pattern similar to a normal corneal endothelium. These findings suggest that development of a full-thickness rabbit cornea model is possible in the laboratory and may open new avenues for research.</description><subject>Animals</subject><subject>Artificial Organs</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Collagen Type VIII - genetics</subject><subject>Cornea - cytology</subject><subject>Cornea - physiology</subject><subject>Corneal Stroma - cytology</subject><subject>Corneal Stroma - metabolism</subject><subject>Endothelium, Corneal - cytology</subject><subject>Endothelium, Corneal - metabolism</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fibrin</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Immunoenzyme Techniques</subject><subject>Keratin-12</subject><subject>Keratins - genetics</subject><subject>Membranes, Artificial</subject><subject>Microscopy, Electron, Scanning</subject><subject>Rabbits</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>Sepharose</subject><subject>Tissue Engineering - methods</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0146-0404</issn><issn>1552-5783</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1rGzEQhkVoid0kt57LXtpT15nR5_poTNMWDIU4OQtJlhyV3ZUr7cbk33dNDD4Nwzzz8vIQ8hlhgSjVfUyvZQGiRsnVFZmjELQWqmEfyByQyxo48Bn5VMpfAIpI4ZrMUDZKsaWck-069WXIoxti6qsUKlOtU3do_eCrR2NtHKY9995U29GWIQ7jdHgusd9P5EO0Ofb1am9yKr7aOhNCane35GMwbfF353lDnh9-PK1_1Zs_P3-vV5vacZRDLazyNDAmglXMgnQguABFwS6dp4JKxjjlwRgrYRespZZ7uqMBgwBspp8b8u0995DTv9GXQXexON-2pvdpLFo2cimZOIHf30E39SzZB33IsTP5TSPok0R9kqhB6JPECf9yzh1t53cX-GxtAr6eAVOcaUM2vYvlwjWAdEnppeBL3L8cY_a6dKZtp1jUx-ORK91oxhDZf4EGh2A</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Alaminos, Miguel</creator><creator>Sanchez-Quevedo, Maria Del Carmen</creator><creator>Munoz-Avila, Jose Ignacio</creator><creator>Serrano, Daniel</creator><creator>Medialdea, Santiago</creator><creator>Carreras, Ignacio</creator><creator>Campos, Antonio</creator><general>ARVO</general><general>Association for Research in Vision and Ophtalmology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold</title><author>Alaminos, Miguel ; Sanchez-Quevedo, Maria Del Carmen ; Munoz-Avila, Jose Ignacio ; Serrano, Daniel ; Medialdea, Santiago ; Carreras, Ignacio ; Campos, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-5b7e2f335fb73b06c05450720b9ce252633424faab60dfbb2b4e2d2f1f5018b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Artificial Organs</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Collagen Type VIII - genetics</topic><topic>Cornea - cytology</topic><topic>Cornea - physiology</topic><topic>Corneal Stroma - cytology</topic><topic>Corneal Stroma - metabolism</topic><topic>Endothelium, Corneal - cytology</topic><topic>Endothelium, Corneal - metabolism</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fibrin</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Immunoenzyme Techniques</topic><topic>Keratin-12</topic><topic>Keratins - genetics</topic><topic>Membranes, Artificial</topic><topic>Microscopy, Electron, Scanning</topic><topic>Rabbits</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>Sepharose</topic><topic>Tissue Engineering - methods</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alaminos, Miguel</creatorcontrib><creatorcontrib>Sanchez-Quevedo, Maria Del Carmen</creatorcontrib><creatorcontrib>Munoz-Avila, Jose Ignacio</creatorcontrib><creatorcontrib>Serrano, Daniel</creatorcontrib><creatorcontrib>Medialdea, Santiago</creatorcontrib><creatorcontrib>Carreras, Ignacio</creatorcontrib><creatorcontrib>Campos, Antonio</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Investigative ophthalmology &amp; visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaminos, Miguel</au><au>Sanchez-Quevedo, Maria Del Carmen</au><au>Munoz-Avila, Jose Ignacio</au><au>Serrano, Daniel</au><au>Medialdea, Santiago</au><au>Carreras, Ignacio</au><au>Campos, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold</atitle><jtitle>Investigative ophthalmology &amp; visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>47</volume><issue>8</issue><spage>3311</spage><epage>3317</epage><pages>3311-3317</pages><issn>0146-0404</issn><issn>1552-5783</issn><eissn>1552-5783</eissn><coden>IOVSDA</coden><abstract>To construct a full-thickness biological substitute of the rabbit cornea by tissue engineering. Ten rabbit corneas were surgically excised, and the three main cell types of the cornea (epithelial, stromal, and endothelial cells) were cultured. Genetic profiling of the cultured cells was performed by RT-PCR for the genes COL8 and KRT12. To develop an organotypic rabbit cornea equivalent, we used a sequential culture technique on porous culture inserts. First, endothelial cells were seeded on the base of the inserts. Then, a stroma substitute made of cultured keratocytes entrapped in a gel of human fibrin and 0.1% agarose was developed. Finally, cultured corneal epithelial cells were grown on the surface of the scaffold. Stratification of the epithelial cell layer was promoted by using an air-liquid culture technique. Corneal substitutes were analyzed by light and electron microscopy. All three types of corneal cells were efficiently cultured in the laboratory, expanded, and used to construct a full-thickness cornea substitute. Gene expression analyses confirmed that cultured endothelial cells expressed the COL8 gene, whereas epithelial cells expressed KRT12. Microscopic evaluation of the cornea substitutes demonstrated that epithelial cells tended to form a normal stratified layer and that stromal keratocytes proliferated rapidly in the stromal substitute. The endothelial monolayer exhibited a pattern similar to a normal corneal endothelium. These findings suggest that development of a full-thickness rabbit cornea model is possible in the laboratory and may open new avenues for research.</abstract><cop>Rockville, MD</cop><pub>ARVO</pub><pmid>16877396</pmid><doi>10.1167/iovs.05-1647</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-0404
ispartof Investigative ophthalmology & visual science, 2006-08, Vol.47 (8), p.3311-3317
issn 0146-0404
1552-5783
1552-5783
language eng
recordid cdi_proquest_miscellaneous_68696357
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Artificial Organs
Biological and medical sciences
Cells, Cultured
Collagen Type VIII - genetics
Cornea - cytology
Cornea - physiology
Corneal Stroma - cytology
Corneal Stroma - metabolism
Endothelium, Corneal - cytology
Endothelium, Corneal - metabolism
Eye and associated structures. Visual pathways and centers. Vision
Fibrin
Fibroblasts - cytology
Fibroblasts - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation
Immunoenzyme Techniques
Keratin-12
Keratins - genetics
Membranes, Artificial
Microscopy, Electron, Scanning
Rabbits
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - metabolism
Sepharose
Tissue Engineering - methods
Vertebrates: nervous system and sense organs
title Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Complete%20Rabbit%20Cornea%20Substitute%20Using%20a%20Fibrin-Agarose%20Scaffold&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Alaminos,%20Miguel&rft.date=2006-08-01&rft.volume=47&rft.issue=8&rft.spage=3311&rft.epage=3317&rft.pages=3311-3317&rft.issn=0146-0404&rft.eissn=1552-5783&rft.coden=IOVSDA&rft_id=info:doi/10.1167/iovs.05-1647&rft_dat=%3Cproquest_cross%3E68696357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68696357&rft_id=info:pmid/16877396&rfr_iscdi=true