A Molecular Tweezer for Lysine and Arginine

Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggreg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2005-10, Vol.127 (41), p.14415-14421
Hauptverfasser: Fokkens, Michael, Schrader, Thomas, Klärner, Frank-Gerrit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14421
container_issue 41
container_start_page 14415
container_title Journal of the American Chemical Society
container_volume 127
creator Fokkens, Michael
Schrader, Thomas
Klärner, Frank-Gerrit
description Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggregation and skin regeneration. Almost none of all artificial receptor structures reported to date are selective and efficient for lysine residues in peptides or proteins. An artificial molecular tweezer is introduced which displays an exceptionally high affinity for lysine (K a ≈ 5000 in neutral phosphate buffer). It features an electron-rich torus-shaped cavity adorned with two peripheral anionic phosphonate groups. Exquisite selectivity for arginine and lysine is achieved by threading the whole amino acid side chain through the cavity and subsequent locking by formation of a phosphonate−ammonium/guanidinium salt bridge. This pseudorotaxane-like geometry is also formed in small basic signaling peptides, which can be bound with unprecedented affinity in buffered aqueous solution. NMR titrations, NOESY and VT experiments as well as ITC measurements and Monte Carlo simulations unanimously point to an enthalpy-driven process utilizing a combination of van der Waals interactions and substantial electrostatic contributions for a conformational lock. Since DMSO and acetonitrile compete with the amino acid guest inside the cavity, a simple change in the cosolvent composition renders the whole complexation process reversible.
doi_str_mv 10.1021/ja052806a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68684702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68684702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-c99ee402011da8adfa81ea70bd2afc741759526a8108b81bf4bcb8d8c4e026e43</originalsourceid><addsrcrecordid>eNptkFFLwzAUhYMobk4f_APSFwWRapKlafo4hnNCRcEJvoXb9FY6u3YmKzp_vRkr24tPl3Pux-FwCDln9JZRzu7mQCOuqIQD0mcRp2HEuDwkfUopD2Mlhz1y4tzcS8EVOyY9JjnztuyTm1Hw1FRo2gpsMPtG_EUbFI0N0rUrawygzoOR_ShrL07JUQGVw7PuDsjb5H42nobp88PjeJSGIBhfhSZJEAXllLEcFOQFKIYQ0yznUJhYsDhKIi69S1WmWFaIzGQqV0Yg5RLFcECutrlL23y16FZ6UTqDVQU1Nq3TUkklYso9eL0FjW2cs1jopS0XYNeaUb1ZRu-W8exFF9pmC8z3ZDeFBy47AJyBqrBQm9LtuZgLTsWmXbjlSrfCn90f7KeW8TCO9OzlVYuEpZP0PdLTfS4Yp-dNa2u_3T8F_wAGZIPy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68684702</pqid></control><display><type>article</type><title>A Molecular Tweezer for Lysine and Arginine</title><source>MEDLINE</source><source>ACS Publications</source><creator>Fokkens, Michael ; Schrader, Thomas ; Klärner, Frank-Gerrit</creator><creatorcontrib>Fokkens, Michael ; Schrader, Thomas ; Klärner, Frank-Gerrit</creatorcontrib><description>Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggregation and skin regeneration. Almost none of all artificial receptor structures reported to date are selective and efficient for lysine residues in peptides or proteins. An artificial molecular tweezer is introduced which displays an exceptionally high affinity for lysine (K a ≈ 5000 in neutral phosphate buffer). It features an electron-rich torus-shaped cavity adorned with two peripheral anionic phosphonate groups. Exquisite selectivity for arginine and lysine is achieved by threading the whole amino acid side chain through the cavity and subsequent locking by formation of a phosphonate−ammonium/guanidinium salt bridge. This pseudorotaxane-like geometry is also formed in small basic signaling peptides, which can be bound with unprecedented affinity in buffered aqueous solution. NMR titrations, NOESY and VT experiments as well as ITC measurements and Monte Carlo simulations unanimously point to an enthalpy-driven process utilizing a combination of van der Waals interactions and substantial electrostatic contributions for a conformational lock. Since DMSO and acetonitrile compete with the amino acid guest inside the cavity, a simple change in the cosolvent composition renders the whole complexation process reversible.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja052806a</identifier><identifier>PMID: 16218636</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acetonitriles - chemistry ; Arginine - chemistry ; Binding, Competitive ; Biological and medical sciences ; Crystallography, X-Ray ; Dimethyl Sulfoxide - chemistry ; Diphosphonates - chemical synthesis ; Diphosphonates - chemistry ; Fundamental and applied biological sciences. Psychology ; Interactions. Associations ; Intermolecular phenomena ; Ligands ; Lithium - chemistry ; Lysine - chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular biophysics ; Molecular Structure ; Organometallic Compounds - chemical synthesis ; Organometallic Compounds - chemistry ; Stereoisomerism</subject><ispartof>Journal of the American Chemical Society, 2005-10, Vol.127 (41), p.14415-14421</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-c99ee402011da8adfa81ea70bd2afc741759526a8108b81bf4bcb8d8c4e026e43</citedby><cites>FETCH-LOGICAL-a412t-c99ee402011da8adfa81ea70bd2afc741759526a8108b81bf4bcb8d8c4e026e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja052806a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja052806a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17242044$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16218636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fokkens, Michael</creatorcontrib><creatorcontrib>Schrader, Thomas</creatorcontrib><creatorcontrib>Klärner, Frank-Gerrit</creatorcontrib><title>A Molecular Tweezer for Lysine and Arginine</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggregation and skin regeneration. Almost none of all artificial receptor structures reported to date are selective and efficient for lysine residues in peptides or proteins. An artificial molecular tweezer is introduced which displays an exceptionally high affinity for lysine (K a ≈ 5000 in neutral phosphate buffer). It features an electron-rich torus-shaped cavity adorned with two peripheral anionic phosphonate groups. Exquisite selectivity for arginine and lysine is achieved by threading the whole amino acid side chain through the cavity and subsequent locking by formation of a phosphonate−ammonium/guanidinium salt bridge. This pseudorotaxane-like geometry is also formed in small basic signaling peptides, which can be bound with unprecedented affinity in buffered aqueous solution. NMR titrations, NOESY and VT experiments as well as ITC measurements and Monte Carlo simulations unanimously point to an enthalpy-driven process utilizing a combination of van der Waals interactions and substantial electrostatic contributions for a conformational lock. Since DMSO and acetonitrile compete with the amino acid guest inside the cavity, a simple change in the cosolvent composition renders the whole complexation process reversible.</description><subject>Acetonitriles - chemistry</subject><subject>Arginine - chemistry</subject><subject>Binding, Competitive</subject><subject>Biological and medical sciences</subject><subject>Crystallography, X-Ray</subject><subject>Dimethyl Sulfoxide - chemistry</subject><subject>Diphosphonates - chemical synthesis</subject><subject>Diphosphonates - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>Ligands</subject><subject>Lithium - chemistry</subject><subject>Lysine - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Molecular Structure</subject><subject>Organometallic Compounds - chemical synthesis</subject><subject>Organometallic Compounds - chemistry</subject><subject>Stereoisomerism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkFFLwzAUhYMobk4f_APSFwWRapKlafo4hnNCRcEJvoXb9FY6u3YmKzp_vRkr24tPl3Pux-FwCDln9JZRzu7mQCOuqIQD0mcRp2HEuDwkfUopD2Mlhz1y4tzcS8EVOyY9JjnztuyTm1Hw1FRo2gpsMPtG_EUbFI0N0rUrawygzoOR_ShrL07JUQGVw7PuDsjb5H42nobp88PjeJSGIBhfhSZJEAXllLEcFOQFKIYQ0yznUJhYsDhKIi69S1WmWFaIzGQqV0Yg5RLFcECutrlL23y16FZ6UTqDVQU1Nq3TUkklYso9eL0FjW2cs1jopS0XYNeaUb1ZRu-W8exFF9pmC8z3ZDeFBy47AJyBqrBQm9LtuZgLTsWmXbjlSrfCn90f7KeW8TCO9OzlVYuEpZP0PdLTfS4Yp-dNa2u_3T8F_wAGZIPy</recordid><startdate>20051019</startdate><enddate>20051019</enddate><creator>Fokkens, Michael</creator><creator>Schrader, Thomas</creator><creator>Klärner, Frank-Gerrit</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051019</creationdate><title>A Molecular Tweezer for Lysine and Arginine</title><author>Fokkens, Michael ; Schrader, Thomas ; Klärner, Frank-Gerrit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-c99ee402011da8adfa81ea70bd2afc741759526a8108b81bf4bcb8d8c4e026e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acetonitriles - chemistry</topic><topic>Arginine - chemistry</topic><topic>Binding, Competitive</topic><topic>Biological and medical sciences</topic><topic>Crystallography, X-Ray</topic><topic>Dimethyl Sulfoxide - chemistry</topic><topic>Diphosphonates - chemical synthesis</topic><topic>Diphosphonates - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>Ligands</topic><topic>Lithium - chemistry</topic><topic>Lysine - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Molecular Structure</topic><topic>Organometallic Compounds - chemical synthesis</topic><topic>Organometallic Compounds - chemistry</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fokkens, Michael</creatorcontrib><creatorcontrib>Schrader, Thomas</creatorcontrib><creatorcontrib>Klärner, Frank-Gerrit</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fokkens, Michael</au><au>Schrader, Thomas</au><au>Klärner, Frank-Gerrit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Molecular Tweezer for Lysine and Arginine</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2005-10-19</date><risdate>2005</risdate><volume>127</volume><issue>41</issue><spage>14415</spage><epage>14421</epage><pages>14415-14421</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggregation and skin regeneration. Almost none of all artificial receptor structures reported to date are selective and efficient for lysine residues in peptides or proteins. An artificial molecular tweezer is introduced which displays an exceptionally high affinity for lysine (K a ≈ 5000 in neutral phosphate buffer). It features an electron-rich torus-shaped cavity adorned with two peripheral anionic phosphonate groups. Exquisite selectivity for arginine and lysine is achieved by threading the whole amino acid side chain through the cavity and subsequent locking by formation of a phosphonate−ammonium/guanidinium salt bridge. This pseudorotaxane-like geometry is also formed in small basic signaling peptides, which can be bound with unprecedented affinity in buffered aqueous solution. NMR titrations, NOESY and VT experiments as well as ITC measurements and Monte Carlo simulations unanimously point to an enthalpy-driven process utilizing a combination of van der Waals interactions and substantial electrostatic contributions for a conformational lock. Since DMSO and acetonitrile compete with the amino acid guest inside the cavity, a simple change in the cosolvent composition renders the whole complexation process reversible.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16218636</pmid><doi>10.1021/ja052806a</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2005-10, Vol.127 (41), p.14415-14421
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_68684702
source MEDLINE; ACS Publications
subjects Acetonitriles - chemistry
Arginine - chemistry
Binding, Competitive
Biological and medical sciences
Crystallography, X-Ray
Dimethyl Sulfoxide - chemistry
Diphosphonates - chemical synthesis
Diphosphonates - chemistry
Fundamental and applied biological sciences. Psychology
Interactions. Associations
Intermolecular phenomena
Ligands
Lithium - chemistry
Lysine - chemistry
Magnetic Resonance Spectroscopy
Models, Molecular
Molecular biophysics
Molecular Structure
Organometallic Compounds - chemical synthesis
Organometallic Compounds - chemistry
Stereoisomerism
title A Molecular Tweezer for Lysine and Arginine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Molecular%20Tweezer%20for%20Lysine%20and%20Arginine&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Fokkens,%20Michael&rft.date=2005-10-19&rft.volume=127&rft.issue=41&rft.spage=14415&rft.epage=14421&rft.pages=14415-14421&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja052806a&rft_dat=%3Cproquest_cross%3E68684702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68684702&rft_id=info:pmid/16218636&rfr_iscdi=true