A Molecular Tweezer for Lysine and Arginine
Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggreg...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2005-10, Vol.127 (41), p.14415-14421 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14421 |
---|---|
container_issue | 41 |
container_start_page | 14415 |
container_title | Journal of the American Chemical Society |
container_volume | 127 |
creator | Fokkens, Michael Schrader, Thomas Klärner, Frank-Gerrit |
description | Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggregation and skin regeneration. Almost none of all artificial receptor structures reported to date are selective and efficient for lysine residues in peptides or proteins. An artificial molecular tweezer is introduced which displays an exceptionally high affinity for lysine (K a ≈ 5000 in neutral phosphate buffer). It features an electron-rich torus-shaped cavity adorned with two peripheral anionic phosphonate groups. Exquisite selectivity for arginine and lysine is achieved by threading the whole amino acid side chain through the cavity and subsequent locking by formation of a phosphonate−ammonium/guanidinium salt bridge. This pseudorotaxane-like geometry is also formed in small basic signaling peptides, which can be bound with unprecedented affinity in buffered aqueous solution. NMR titrations, NOESY and VT experiments as well as ITC measurements and Monte Carlo simulations unanimously point to an enthalpy-driven process utilizing a combination of van der Waals interactions and substantial electrostatic contributions for a conformational lock. Since DMSO and acetonitrile compete with the amino acid guest inside the cavity, a simple change in the cosolvent composition renders the whole complexation process reversible. |
doi_str_mv | 10.1021/ja052806a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68684702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68684702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-c99ee402011da8adfa81ea70bd2afc741759526a8108b81bf4bcb8d8c4e026e43</originalsourceid><addsrcrecordid>eNptkFFLwzAUhYMobk4f_APSFwWRapKlafo4hnNCRcEJvoXb9FY6u3YmKzp_vRkr24tPl3Pux-FwCDln9JZRzu7mQCOuqIQD0mcRp2HEuDwkfUopD2Mlhz1y4tzcS8EVOyY9JjnztuyTm1Hw1FRo2gpsMPtG_EUbFI0N0rUrawygzoOR_ShrL07JUQGVw7PuDsjb5H42nobp88PjeJSGIBhfhSZJEAXllLEcFOQFKIYQ0yznUJhYsDhKIi69S1WmWFaIzGQqV0Yg5RLFcECutrlL23y16FZ6UTqDVQU1Nq3TUkklYso9eL0FjW2cs1jopS0XYNeaUb1ZRu-W8exFF9pmC8z3ZDeFBy47AJyBqrBQm9LtuZgLTsWmXbjlSrfCn90f7KeW8TCO9OzlVYuEpZP0PdLTfS4Yp-dNa2u_3T8F_wAGZIPy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68684702</pqid></control><display><type>article</type><title>A Molecular Tweezer for Lysine and Arginine</title><source>MEDLINE</source><source>ACS Publications</source><creator>Fokkens, Michael ; Schrader, Thomas ; Klärner, Frank-Gerrit</creator><creatorcontrib>Fokkens, Michael ; Schrader, Thomas ; Klärner, Frank-Gerrit</creatorcontrib><description>Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggregation and skin regeneration. Almost none of all artificial receptor structures reported to date are selective and efficient for lysine residues in peptides or proteins. An artificial molecular tweezer is introduced which displays an exceptionally high affinity for lysine (K a ≈ 5000 in neutral phosphate buffer). It features an electron-rich torus-shaped cavity adorned with two peripheral anionic phosphonate groups. Exquisite selectivity for arginine and lysine is achieved by threading the whole amino acid side chain through the cavity and subsequent locking by formation of a phosphonate−ammonium/guanidinium salt bridge. This pseudorotaxane-like geometry is also formed in small basic signaling peptides, which can be bound with unprecedented affinity in buffered aqueous solution. NMR titrations, NOESY and VT experiments as well as ITC measurements and Monte Carlo simulations unanimously point to an enthalpy-driven process utilizing a combination of van der Waals interactions and substantial electrostatic contributions for a conformational lock. Since DMSO and acetonitrile compete with the amino acid guest inside the cavity, a simple change in the cosolvent composition renders the whole complexation process reversible.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja052806a</identifier><identifier>PMID: 16218636</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acetonitriles - chemistry ; Arginine - chemistry ; Binding, Competitive ; Biological and medical sciences ; Crystallography, X-Ray ; Dimethyl Sulfoxide - chemistry ; Diphosphonates - chemical synthesis ; Diphosphonates - chemistry ; Fundamental and applied biological sciences. Psychology ; Interactions. Associations ; Intermolecular phenomena ; Ligands ; Lithium - chemistry ; Lysine - chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular biophysics ; Molecular Structure ; Organometallic Compounds - chemical synthesis ; Organometallic Compounds - chemistry ; Stereoisomerism</subject><ispartof>Journal of the American Chemical Society, 2005-10, Vol.127 (41), p.14415-14421</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-c99ee402011da8adfa81ea70bd2afc741759526a8108b81bf4bcb8d8c4e026e43</citedby><cites>FETCH-LOGICAL-a412t-c99ee402011da8adfa81ea70bd2afc741759526a8108b81bf4bcb8d8c4e026e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja052806a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja052806a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17242044$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16218636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fokkens, Michael</creatorcontrib><creatorcontrib>Schrader, Thomas</creatorcontrib><creatorcontrib>Klärner, Frank-Gerrit</creatorcontrib><title>A Molecular Tweezer for Lysine and Arginine</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggregation and skin regeneration. Almost none of all artificial receptor structures reported to date are selective and efficient for lysine residues in peptides or proteins. An artificial molecular tweezer is introduced which displays an exceptionally high affinity for lysine (K a ≈ 5000 in neutral phosphate buffer). It features an electron-rich torus-shaped cavity adorned with two peripheral anionic phosphonate groups. Exquisite selectivity for arginine and lysine is achieved by threading the whole amino acid side chain through the cavity and subsequent locking by formation of a phosphonate−ammonium/guanidinium salt bridge. This pseudorotaxane-like geometry is also formed in small basic signaling peptides, which can be bound with unprecedented affinity in buffered aqueous solution. NMR titrations, NOESY and VT experiments as well as ITC measurements and Monte Carlo simulations unanimously point to an enthalpy-driven process utilizing a combination of van der Waals interactions and substantial electrostatic contributions for a conformational lock. Since DMSO and acetonitrile compete with the amino acid guest inside the cavity, a simple change in the cosolvent composition renders the whole complexation process reversible.</description><subject>Acetonitriles - chemistry</subject><subject>Arginine - chemistry</subject><subject>Binding, Competitive</subject><subject>Biological and medical sciences</subject><subject>Crystallography, X-Ray</subject><subject>Dimethyl Sulfoxide - chemistry</subject><subject>Diphosphonates - chemical synthesis</subject><subject>Diphosphonates - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>Ligands</subject><subject>Lithium - chemistry</subject><subject>Lysine - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Molecular Structure</subject><subject>Organometallic Compounds - chemical synthesis</subject><subject>Organometallic Compounds - chemistry</subject><subject>Stereoisomerism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkFFLwzAUhYMobk4f_APSFwWRapKlafo4hnNCRcEJvoXb9FY6u3YmKzp_vRkr24tPl3Pux-FwCDln9JZRzu7mQCOuqIQD0mcRp2HEuDwkfUopD2Mlhz1y4tzcS8EVOyY9JjnztuyTm1Hw1FRo2gpsMPtG_EUbFI0N0rUrawygzoOR_ShrL07JUQGVw7PuDsjb5H42nobp88PjeJSGIBhfhSZJEAXllLEcFOQFKIYQ0yznUJhYsDhKIi69S1WmWFaIzGQqV0Yg5RLFcECutrlL23y16FZ6UTqDVQU1Nq3TUkklYso9eL0FjW2cs1jopS0XYNeaUb1ZRu-W8exFF9pmC8z3ZDeFBy47AJyBqrBQm9LtuZgLTsWmXbjlSrfCn90f7KeW8TCO9OzlVYuEpZP0PdLTfS4Yp-dNa2u_3T8F_wAGZIPy</recordid><startdate>20051019</startdate><enddate>20051019</enddate><creator>Fokkens, Michael</creator><creator>Schrader, Thomas</creator><creator>Klärner, Frank-Gerrit</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051019</creationdate><title>A Molecular Tweezer for Lysine and Arginine</title><author>Fokkens, Michael ; Schrader, Thomas ; Klärner, Frank-Gerrit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-c99ee402011da8adfa81ea70bd2afc741759526a8108b81bf4bcb8d8c4e026e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acetonitriles - chemistry</topic><topic>Arginine - chemistry</topic><topic>Binding, Competitive</topic><topic>Biological and medical sciences</topic><topic>Crystallography, X-Ray</topic><topic>Dimethyl Sulfoxide - chemistry</topic><topic>Diphosphonates - chemical synthesis</topic><topic>Diphosphonates - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>Ligands</topic><topic>Lithium - chemistry</topic><topic>Lysine - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Molecular Structure</topic><topic>Organometallic Compounds - chemical synthesis</topic><topic>Organometallic Compounds - chemistry</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fokkens, Michael</creatorcontrib><creatorcontrib>Schrader, Thomas</creatorcontrib><creatorcontrib>Klärner, Frank-Gerrit</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fokkens, Michael</au><au>Schrader, Thomas</au><au>Klärner, Frank-Gerrit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Molecular Tweezer for Lysine and Arginine</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2005-10-19</date><risdate>2005</risdate><volume>127</volume><issue>41</issue><spage>14415</spage><epage>14421</epage><pages>14415-14421</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g. for bacterial cell wall biosynthesis, Alzheimer peptide aggregation and skin regeneration. Almost none of all artificial receptor structures reported to date are selective and efficient for lysine residues in peptides or proteins. An artificial molecular tweezer is introduced which displays an exceptionally high affinity for lysine (K a ≈ 5000 in neutral phosphate buffer). It features an electron-rich torus-shaped cavity adorned with two peripheral anionic phosphonate groups. Exquisite selectivity for arginine and lysine is achieved by threading the whole amino acid side chain through the cavity and subsequent locking by formation of a phosphonate−ammonium/guanidinium salt bridge. This pseudorotaxane-like geometry is also formed in small basic signaling peptides, which can be bound with unprecedented affinity in buffered aqueous solution. NMR titrations, NOESY and VT experiments as well as ITC measurements and Monte Carlo simulations unanimously point to an enthalpy-driven process utilizing a combination of van der Waals interactions and substantial electrostatic contributions for a conformational lock. Since DMSO and acetonitrile compete with the amino acid guest inside the cavity, a simple change in the cosolvent composition renders the whole complexation process reversible.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16218636</pmid><doi>10.1021/ja052806a</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2005-10, Vol.127 (41), p.14415-14421 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_68684702 |
source | MEDLINE; ACS Publications |
subjects | Acetonitriles - chemistry Arginine - chemistry Binding, Competitive Biological and medical sciences Crystallography, X-Ray Dimethyl Sulfoxide - chemistry Diphosphonates - chemical synthesis Diphosphonates - chemistry Fundamental and applied biological sciences. Psychology Interactions. Associations Intermolecular phenomena Ligands Lithium - chemistry Lysine - chemistry Magnetic Resonance Spectroscopy Models, Molecular Molecular biophysics Molecular Structure Organometallic Compounds - chemical synthesis Organometallic Compounds - chemistry Stereoisomerism |
title | A Molecular Tweezer for Lysine and Arginine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Molecular%20Tweezer%20for%20Lysine%20and%20Arginine&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Fokkens,%20Michael&rft.date=2005-10-19&rft.volume=127&rft.issue=41&rft.spage=14415&rft.epage=14421&rft.pages=14415-14421&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja052806a&rft_dat=%3Cproquest_cross%3E68684702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68684702&rft_id=info:pmid/16218636&rfr_iscdi=true |