A General Strategy for Creating “Inactive-Conformation” Abl Inhibitors
Kinase inhibitors that bind to the ATP cleft can be broadly classified into two groups: those that bind exclusively to the ATP site with the kinase assuming a conformation otherwise conducive to phosphotransfer (type I), and those that exploit a hydrophobic site immediately adjacent to the ATP pocke...
Gespeichert in:
Veröffentlicht in: | Chemistry & biology 2006-07, Vol.13 (7), p.779-786 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 7 |
container_start_page | 779 |
container_title | Chemistry & biology |
container_volume | 13 |
creator | Okram, Barun Nagle, Advait Adrián, Francisco J. Lee, Christian Ren, Pingda Wang, Xia Sim, Taebo Xie, Yongping Wang, Xing Xia, Gang Spraggon, Glen Warmuth, Markus Liu, Yi Gray, Nathanael S. |
description | Kinase inhibitors that bind to the ATP cleft can be broadly classified into two groups: those that bind exclusively to the ATP site with the kinase assuming a conformation otherwise conducive to phosphotransfer (type I), and those that exploit a hydrophobic site immediately adjacent to the ATP pocket made accessible by a conformational rearrangement of the activation loop (type II). To date, all type II inhibitors were discovered by using structure-activity-guided optimization strategies. Here, we describe a general pharmacophore model of type II inhibition that enables a rational “hybrid-design” approach whereby a 3-trifluoromethylbenzamide functionality is appended to four distinct type I scaffolds in order to convert them into their corresponding type II counterparts. We demonstrate that the designed compounds function as type II inhibitors by using biochemical and cellular kinase assays and by cocrystallography with Abl. |
doi_str_mv | 10.1016/j.chembiol.2006.05.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68683569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074552106001840</els_id><sourcerecordid>68683569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a67dfd5c2f56b20bd3d0b9b72fa5b4e747cd2dd5233ba1f18ad9cf381f459483</originalsourceid><addsrcrecordid>eNqFkMtO3DAUhq2qFVDKK6Csukt6bMeOs-to1NKpkFjA3vLlGDxKYmpnkNjxIPTleJKGzlRdsjpH-m_SR8g5hYYClV-2jbvD0cY0NAxANiAaoOIdOaGq62vKgb5ffujaWghGj8nHUrYAQFUvj8gxlarjwOQJ-bmqLnDCbIbqes5mxtvHKqRcrTOaOU631cvT82Yybo4PWK_TtGjjIqTp5el3tbJDtZnuoo1zyuUT-RDMUPDscE_JzfdvN-sf9eXVxWa9uqydoHSujex88MKxIKRlYD33YHvbsWCEbbFrO-eZ94Jxbg0NVBnfu8AVDa3oW8VPyed97X1Ov3ZYZj3G4nAYzIRpV7RUUnEh-zeNDHjP1d9GuTe6nErJGPR9jqPJj5qCfqWtt_ofbf1KW4PQC-0leH5Y2NkR_f_YAe9i-Lo34MLjIWLWxUWcHPqY0c3ap_jWxh9SFpYa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20393848</pqid></control><display><type>article</type><title>A General Strategy for Creating “Inactive-Conformation” Abl Inhibitors</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Okram, Barun ; Nagle, Advait ; Adrián, Francisco J. ; Lee, Christian ; Ren, Pingda ; Wang, Xia ; Sim, Taebo ; Xie, Yongping ; Wang, Xing ; Xia, Gang ; Spraggon, Glen ; Warmuth, Markus ; Liu, Yi ; Gray, Nathanael S.</creator><creatorcontrib>Okram, Barun ; Nagle, Advait ; Adrián, Francisco J. ; Lee, Christian ; Ren, Pingda ; Wang, Xia ; Sim, Taebo ; Xie, Yongping ; Wang, Xing ; Xia, Gang ; Spraggon, Glen ; Warmuth, Markus ; Liu, Yi ; Gray, Nathanael S.</creatorcontrib><description>Kinase inhibitors that bind to the ATP cleft can be broadly classified into two groups: those that bind exclusively to the ATP site with the kinase assuming a conformation otherwise conducive to phosphotransfer (type I), and those that exploit a hydrophobic site immediately adjacent to the ATP pocket made accessible by a conformational rearrangement of the activation loop (type II). To date, all type II inhibitors were discovered by using structure-activity-guided optimization strategies. Here, we describe a general pharmacophore model of type II inhibition that enables a rational “hybrid-design” approach whereby a 3-trifluoromethylbenzamide functionality is appended to four distinct type I scaffolds in order to convert them into their corresponding type II counterparts. We demonstrate that the designed compounds function as type II inhibitors by using biochemical and cellular kinase assays and by cocrystallography with Abl.</description><identifier>ISSN: 1074-5521</identifier><identifier>EISSN: 1879-1301</identifier><identifier>DOI: 10.1016/j.chembiol.2006.05.015</identifier><identifier>PMID: 16873026</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; CHEMBIO ; Crystallography ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Conformation ; Phosphorylation ; Proto-Oncogene Proteins c-abl - antagonists & inhibitors ; Proto-Oncogene Proteins c-abl - metabolism ; SIGNALING ; Structure-Activity Relationship ; Substrate Specificity</subject><ispartof>Chemistry & biology, 2006-07, Vol.13 (7), p.779-786</ispartof><rights>2006 Elsevier Ltd</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-a67dfd5c2f56b20bd3d0b9b72fa5b4e747cd2dd5233ba1f18ad9cf381f459483</citedby><cites>FETCH-LOGICAL-c511t-a67dfd5c2f56b20bd3d0b9b72fa5b4e747cd2dd5233ba1f18ad9cf381f459483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chembiol.2006.05.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16873026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okram, Barun</creatorcontrib><creatorcontrib>Nagle, Advait</creatorcontrib><creatorcontrib>Adrián, Francisco J.</creatorcontrib><creatorcontrib>Lee, Christian</creatorcontrib><creatorcontrib>Ren, Pingda</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Sim, Taebo</creatorcontrib><creatorcontrib>Xie, Yongping</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Xia, Gang</creatorcontrib><creatorcontrib>Spraggon, Glen</creatorcontrib><creatorcontrib>Warmuth, Markus</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Gray, Nathanael S.</creatorcontrib><title>A General Strategy for Creating “Inactive-Conformation” Abl Inhibitors</title><title>Chemistry & biology</title><addtitle>Chem Biol</addtitle><description>Kinase inhibitors that bind to the ATP cleft can be broadly classified into two groups: those that bind exclusively to the ATP site with the kinase assuming a conformation otherwise conducive to phosphotransfer (type I), and those that exploit a hydrophobic site immediately adjacent to the ATP pocket made accessible by a conformational rearrangement of the activation loop (type II). To date, all type II inhibitors were discovered by using structure-activity-guided optimization strategies. Here, we describe a general pharmacophore model of type II inhibition that enables a rational “hybrid-design” approach whereby a 3-trifluoromethylbenzamide functionality is appended to four distinct type I scaffolds in order to convert them into their corresponding type II counterparts. We demonstrate that the designed compounds function as type II inhibitors by using biochemical and cellular kinase assays and by cocrystallography with Abl.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>CHEMBIO</subject><subject>Crystallography</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Phosphorylation</subject><subject>Proto-Oncogene Proteins c-abl - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins c-abl - metabolism</subject><subject>SIGNALING</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><issn>1074-5521</issn><issn>1879-1301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtO3DAUhq2qFVDKK6Csukt6bMeOs-to1NKpkFjA3vLlGDxKYmpnkNjxIPTleJKGzlRdsjpH-m_SR8g5hYYClV-2jbvD0cY0NAxANiAaoOIdOaGq62vKgb5ffujaWghGj8nHUrYAQFUvj8gxlarjwOQJ-bmqLnDCbIbqes5mxtvHKqRcrTOaOU631cvT82Yybo4PWK_TtGjjIqTp5el3tbJDtZnuoo1zyuUT-RDMUPDscE_JzfdvN-sf9eXVxWa9uqydoHSujex88MKxIKRlYD33YHvbsWCEbbFrO-eZ94Jxbg0NVBnfu8AVDa3oW8VPyed97X1Ov3ZYZj3G4nAYzIRpV7RUUnEh-zeNDHjP1d9GuTe6nErJGPR9jqPJj5qCfqWtt_ofbf1KW4PQC-0leH5Y2NkR_f_YAe9i-Lo34MLjIWLWxUWcHPqY0c3ap_jWxh9SFpYa</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Okram, Barun</creator><creator>Nagle, Advait</creator><creator>Adrián, Francisco J.</creator><creator>Lee, Christian</creator><creator>Ren, Pingda</creator><creator>Wang, Xia</creator><creator>Sim, Taebo</creator><creator>Xie, Yongping</creator><creator>Wang, Xing</creator><creator>Xia, Gang</creator><creator>Spraggon, Glen</creator><creator>Warmuth, Markus</creator><creator>Liu, Yi</creator><creator>Gray, Nathanael S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>A General Strategy for Creating “Inactive-Conformation” Abl Inhibitors</title><author>Okram, Barun ; Nagle, Advait ; Adrián, Francisco J. ; Lee, Christian ; Ren, Pingda ; Wang, Xia ; Sim, Taebo ; Xie, Yongping ; Wang, Xing ; Xia, Gang ; Spraggon, Glen ; Warmuth, Markus ; Liu, Yi ; Gray, Nathanael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a67dfd5c2f56b20bd3d0b9b72fa5b4e747cd2dd5233ba1f18ad9cf381f459483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>CHEMBIO</topic><topic>Crystallography</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Phosphorylation</topic><topic>Proto-Oncogene Proteins c-abl - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins c-abl - metabolism</topic><topic>SIGNALING</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><toplevel>online_resources</toplevel><creatorcontrib>Okram, Barun</creatorcontrib><creatorcontrib>Nagle, Advait</creatorcontrib><creatorcontrib>Adrián, Francisco J.</creatorcontrib><creatorcontrib>Lee, Christian</creatorcontrib><creatorcontrib>Ren, Pingda</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Sim, Taebo</creatorcontrib><creatorcontrib>Xie, Yongping</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Xia, Gang</creatorcontrib><creatorcontrib>Spraggon, Glen</creatorcontrib><creatorcontrib>Warmuth, Markus</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Gray, Nathanael S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okram, Barun</au><au>Nagle, Advait</au><au>Adrián, Francisco J.</au><au>Lee, Christian</au><au>Ren, Pingda</au><au>Wang, Xia</au><au>Sim, Taebo</au><au>Xie, Yongping</au><au>Wang, Xing</au><au>Xia, Gang</au><au>Spraggon, Glen</au><au>Warmuth, Markus</au><au>Liu, Yi</au><au>Gray, Nathanael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Strategy for Creating “Inactive-Conformation” Abl Inhibitors</atitle><jtitle>Chemistry & biology</jtitle><addtitle>Chem Biol</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>13</volume><issue>7</issue><spage>779</spage><epage>786</epage><pages>779-786</pages><issn>1074-5521</issn><eissn>1879-1301</eissn><abstract>Kinase inhibitors that bind to the ATP cleft can be broadly classified into two groups: those that bind exclusively to the ATP site with the kinase assuming a conformation otherwise conducive to phosphotransfer (type I), and those that exploit a hydrophobic site immediately adjacent to the ATP pocket made accessible by a conformational rearrangement of the activation loop (type II). To date, all type II inhibitors were discovered by using structure-activity-guided optimization strategies. Here, we describe a general pharmacophore model of type II inhibition that enables a rational “hybrid-design” approach whereby a 3-trifluoromethylbenzamide functionality is appended to four distinct type I scaffolds in order to convert them into their corresponding type II counterparts. We demonstrate that the designed compounds function as type II inhibitors by using biochemical and cellular kinase assays and by cocrystallography with Abl.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>16873026</pmid><doi>10.1016/j.chembiol.2006.05.015</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-5521 |
ispartof | Chemistry & biology, 2006-07, Vol.13 (7), p.779-786 |
issn | 1074-5521 1879-1301 |
language | eng |
recordid | cdi_proquest_miscellaneous_68683569 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphate - metabolism CHEMBIO Crystallography Enzyme Inhibitors - chemistry Enzyme Inhibitors - metabolism Hydrogen Bonding Models, Molecular Molecular Conformation Phosphorylation Proto-Oncogene Proteins c-abl - antagonists & inhibitors Proto-Oncogene Proteins c-abl - metabolism SIGNALING Structure-Activity Relationship Substrate Specificity |
title | A General Strategy for Creating “Inactive-Conformation” Abl Inhibitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Strategy%20for%20Creating%20%E2%80%9CInactive-Conformation%E2%80%9D%20Abl%20Inhibitors&rft.jtitle=Chemistry%20&%20biology&rft.au=Okram,%20Barun&rft.date=2006-07-01&rft.volume=13&rft.issue=7&rft.spage=779&rft.epage=786&rft.pages=779-786&rft.issn=1074-5521&rft.eissn=1879-1301&rft_id=info:doi/10.1016/j.chembiol.2006.05.015&rft_dat=%3Cproquest_cross%3E68683569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20393848&rft_id=info:pmid/16873026&rft_els_id=S1074552106001840&rfr_iscdi=true |