3-D electrode designs for flow-through dielectrophoretic systems

Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2005-10, Vol.26 (19), p.3745-3757
Hauptverfasser: Park, Benjamin Y., Madou, Marc J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3757
container_issue 19
container_start_page 3745
container_title Electrophoresis
container_volume 26
creator Park, Benjamin Y.
Madou, Marc J.
description Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3‐D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3‐D shapes. In this paper, the use of 3‐D electrode designs for high‐throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3‐D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3‐D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3‐D electrode designs that are simple extensions of 2‐D designs are presented, and two novel electrode designs that are not based on 2‐D electrode designs are introduced. Finally, a proof‐of‐concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated.
doi_str_mv 10.1002/elps.200500138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68683521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68683521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3818-3c0a5fdd75cd5425f72ea30c7dab80cfd0e8ad7b120b81dbf869747b30449d933</originalsourceid><addsrcrecordid>eNqFkM1PwjAYhxujEUSvHs1O3oZv2_VjNw0iGIiaoNF4aba2g-lgsx1B_ntHIOjN03t5fk_yPgidY-hiAHJli8p3CQADwFQeoDZmhISES3qI2oAFDUFS1kIn3n8AQBRH0TFqYd5gnPM2uqbhbWALq2tXGhsY6_PpwgdZ6YKsKFdhPXPlcjoLTL6DqlnpbJ3rwK99bef-FB1lSeHt2e520Mtd_7k3DMePg_vezTjUVGIZUg0Jy4wRTBsWEZYJYhMKWpgklaAzA1YmRqSYQCqxSTPJYxGJlEIUxSamtIMut97KlV9L62s1z722RZEsbLn0isvmZ0ZwA3a3oHal985mqnL5PHFrhUFtmqlNM7Vv1gwuduZlOrfmF99FaoB4C6zywq7_0an--GnyVx5ut3lT63u_Tdyn4oIKpl4fBmr4NhpN-LCn3ukPfYiIaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68683521</pqid></control><display><type>article</type><title>3-D electrode designs for flow-through dielectrophoretic systems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Benjamin Y. ; Madou, Marc J.</creator><creatorcontrib>Park, Benjamin Y. ; Madou, Marc J.</creatorcontrib><description>Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3‐D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3‐D shapes. In this paper, the use of 3‐D electrode designs for high‐throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3‐D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3‐D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3‐D electrode designs that are simple extensions of 2‐D designs are presented, and two novel electrode designs that are not based on 2‐D electrode designs are introduced. Finally, a proof‐of‐concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.200500138</identifier><identifier>PMID: 16152666</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>3-D electrode design ; Canola Oil ; Carbon - isolation &amp; purification ; Dielectrophoresis ; Electricity ; Electrophoresis - instrumentation ; Fatty Acids, Monounsaturated - chemistry ; Filtration - instrumentation ; Flow-through ; Microelectrodes ; Nanostructures</subject><ispartof>Electrophoresis, 2005-10, Vol.26 (19), p.3745-3757</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3818-3c0a5fdd75cd5425f72ea30c7dab80cfd0e8ad7b120b81dbf869747b30449d933</citedby><cites>FETCH-LOGICAL-c3818-3c0a5fdd75cd5425f72ea30c7dab80cfd0e8ad7b120b81dbf869747b30449d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.200500138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16152666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Benjamin Y.</creatorcontrib><creatorcontrib>Madou, Marc J.</creatorcontrib><title>3-D electrode designs for flow-through dielectrophoretic systems</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3‐D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3‐D shapes. In this paper, the use of 3‐D electrode designs for high‐throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3‐D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3‐D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3‐D electrode designs that are simple extensions of 2‐D designs are presented, and two novel electrode designs that are not based on 2‐D electrode designs are introduced. Finally, a proof‐of‐concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated.</description><subject>3-D electrode design</subject><subject>Canola Oil</subject><subject>Carbon - isolation &amp; purification</subject><subject>Dielectrophoresis</subject><subject>Electricity</subject><subject>Electrophoresis - instrumentation</subject><subject>Fatty Acids, Monounsaturated - chemistry</subject><subject>Filtration - instrumentation</subject><subject>Flow-through</subject><subject>Microelectrodes</subject><subject>Nanostructures</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1PwjAYhxujEUSvHs1O3oZv2_VjNw0iGIiaoNF4aba2g-lgsx1B_ntHIOjN03t5fk_yPgidY-hiAHJli8p3CQADwFQeoDZmhISES3qI2oAFDUFS1kIn3n8AQBRH0TFqYd5gnPM2uqbhbWALq2tXGhsY6_PpwgdZ6YKsKFdhPXPlcjoLTL6DqlnpbJ3rwK99bef-FB1lSeHt2e520Mtd_7k3DMePg_vezTjUVGIZUg0Jy4wRTBsWEZYJYhMKWpgklaAzA1YmRqSYQCqxSTPJYxGJlEIUxSamtIMut97KlV9L62s1z722RZEsbLn0isvmZ0ZwA3a3oHal985mqnL5PHFrhUFtmqlNM7Vv1gwuduZlOrfmF99FaoB4C6zywq7_0an--GnyVx5ut3lT63u_Tdyn4oIKpl4fBmr4NhpN-LCn3ukPfYiIaA</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Park, Benjamin Y.</creator><creator>Madou, Marc J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051001</creationdate><title>3-D electrode designs for flow-through dielectrophoretic systems</title><author>Park, Benjamin Y. ; Madou, Marc J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3818-3c0a5fdd75cd5425f72ea30c7dab80cfd0e8ad7b120b81dbf869747b30449d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>3-D electrode design</topic><topic>Canola Oil</topic><topic>Carbon - isolation &amp; purification</topic><topic>Dielectrophoresis</topic><topic>Electricity</topic><topic>Electrophoresis - instrumentation</topic><topic>Fatty Acids, Monounsaturated - chemistry</topic><topic>Filtration - instrumentation</topic><topic>Flow-through</topic><topic>Microelectrodes</topic><topic>Nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Benjamin Y.</creatorcontrib><creatorcontrib>Madou, Marc J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Benjamin Y.</au><au>Madou, Marc J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D electrode designs for flow-through dielectrophoretic systems</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>26</volume><issue>19</issue><spage>3745</spage><epage>3757</epage><pages>3745-3757</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3‐D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3‐D shapes. In this paper, the use of 3‐D electrode designs for high‐throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3‐D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3‐D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3‐D electrode designs that are simple extensions of 2‐D designs are presented, and two novel electrode designs that are not based on 2‐D electrode designs are introduced. Finally, a proof‐of‐concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>16152666</pmid><doi>10.1002/elps.200500138</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2005-10, Vol.26 (19), p.3745-3757
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_68683521
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 3-D electrode design
Canola Oil
Carbon - isolation & purification
Dielectrophoresis
Electricity
Electrophoresis - instrumentation
Fatty Acids, Monounsaturated - chemistry
Filtration - instrumentation
Flow-through
Microelectrodes
Nanostructures
title 3-D electrode designs for flow-through dielectrophoretic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20electrode%20designs%20for%20flow-through%20dielectrophoretic%20systems&rft.jtitle=Electrophoresis&rft.au=Park,%20Benjamin%20Y.&rft.date=2005-10-01&rft.volume=26&rft.issue=19&rft.spage=3745&rft.epage=3757&rft.pages=3745-3757&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.200500138&rft_dat=%3Cproquest_cross%3E68683521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68683521&rft_id=info:pmid/16152666&rfr_iscdi=true