3-D electrode designs for flow-through dielectrophoretic systems
Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed res...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2005-10, Vol.26 (19), p.3745-3757 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3757 |
---|---|
container_issue | 19 |
container_start_page | 3745 |
container_title | Electrophoresis |
container_volume | 26 |
creator | Park, Benjamin Y. Madou, Marc J. |
description | Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3‐D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3‐D shapes. In this paper, the use of 3‐D electrode designs for high‐throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3‐D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3‐D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3‐D electrode designs that are simple extensions of 2‐D designs are presented, and two novel electrode designs that are not based on 2‐D electrode designs are introduced. Finally, a proof‐of‐concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated. |
doi_str_mv | 10.1002/elps.200500138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68683521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68683521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3818-3c0a5fdd75cd5425f72ea30c7dab80cfd0e8ad7b120b81dbf869747b30449d933</originalsourceid><addsrcrecordid>eNqFkM1PwjAYhxujEUSvHs1O3oZv2_VjNw0iGIiaoNF4aba2g-lgsx1B_ntHIOjN03t5fk_yPgidY-hiAHJli8p3CQADwFQeoDZmhISES3qI2oAFDUFS1kIn3n8AQBRH0TFqYd5gnPM2uqbhbWALq2tXGhsY6_PpwgdZ6YKsKFdhPXPlcjoLTL6DqlnpbJ3rwK99bef-FB1lSeHt2e520Mtd_7k3DMePg_vezTjUVGIZUg0Jy4wRTBsWEZYJYhMKWpgklaAzA1YmRqSYQCqxSTPJYxGJlEIUxSamtIMut97KlV9L62s1z722RZEsbLn0isvmZ0ZwA3a3oHal985mqnL5PHFrhUFtmqlNM7Vv1gwuduZlOrfmF99FaoB4C6zywq7_0an--GnyVx5ut3lT63u_Tdyn4oIKpl4fBmr4NhpN-LCn3ukPfYiIaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68683521</pqid></control><display><type>article</type><title>3-D electrode designs for flow-through dielectrophoretic systems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Benjamin Y. ; Madou, Marc J.</creator><creatorcontrib>Park, Benjamin Y. ; Madou, Marc J.</creatorcontrib><description>Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3‐D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3‐D shapes. In this paper, the use of 3‐D electrode designs for high‐throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3‐D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3‐D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3‐D electrode designs that are simple extensions of 2‐D designs are presented, and two novel electrode designs that are not based on 2‐D electrode designs are introduced. Finally, a proof‐of‐concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.200500138</identifier><identifier>PMID: 16152666</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>3-D electrode design ; Canola Oil ; Carbon - isolation & purification ; Dielectrophoresis ; Electricity ; Electrophoresis - instrumentation ; Fatty Acids, Monounsaturated - chemistry ; Filtration - instrumentation ; Flow-through ; Microelectrodes ; Nanostructures</subject><ispartof>Electrophoresis, 2005-10, Vol.26 (19), p.3745-3757</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3818-3c0a5fdd75cd5425f72ea30c7dab80cfd0e8ad7b120b81dbf869747b30449d933</citedby><cites>FETCH-LOGICAL-c3818-3c0a5fdd75cd5425f72ea30c7dab80cfd0e8ad7b120b81dbf869747b30449d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.200500138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16152666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Benjamin Y.</creatorcontrib><creatorcontrib>Madou, Marc J.</creatorcontrib><title>3-D electrode designs for flow-through dielectrophoretic systems</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3‐D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3‐D shapes. In this paper, the use of 3‐D electrode designs for high‐throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3‐D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3‐D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3‐D electrode designs that are simple extensions of 2‐D designs are presented, and two novel electrode designs that are not based on 2‐D electrode designs are introduced. Finally, a proof‐of‐concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated.</description><subject>3-D electrode design</subject><subject>Canola Oil</subject><subject>Carbon - isolation & purification</subject><subject>Dielectrophoresis</subject><subject>Electricity</subject><subject>Electrophoresis - instrumentation</subject><subject>Fatty Acids, Monounsaturated - chemistry</subject><subject>Filtration - instrumentation</subject><subject>Flow-through</subject><subject>Microelectrodes</subject><subject>Nanostructures</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1PwjAYhxujEUSvHs1O3oZv2_VjNw0iGIiaoNF4aba2g-lgsx1B_ntHIOjN03t5fk_yPgidY-hiAHJli8p3CQADwFQeoDZmhISES3qI2oAFDUFS1kIn3n8AQBRH0TFqYd5gnPM2uqbhbWALq2tXGhsY6_PpwgdZ6YKsKFdhPXPlcjoLTL6DqlnpbJ3rwK99bef-FB1lSeHt2e520Mtd_7k3DMePg_vezTjUVGIZUg0Jy4wRTBsWEZYJYhMKWpgklaAzA1YmRqSYQCqxSTPJYxGJlEIUxSamtIMut97KlV9L62s1z722RZEsbLn0isvmZ0ZwA3a3oHal985mqnL5PHFrhUFtmqlNM7Vv1gwuduZlOrfmF99FaoB4C6zywq7_0an--GnyVx5ut3lT63u_Tdyn4oIKpl4fBmr4NhpN-LCn3ukPfYiIaA</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Park, Benjamin Y.</creator><creator>Madou, Marc J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051001</creationdate><title>3-D electrode designs for flow-through dielectrophoretic systems</title><author>Park, Benjamin Y. ; Madou, Marc J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3818-3c0a5fdd75cd5425f72ea30c7dab80cfd0e8ad7b120b81dbf869747b30449d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>3-D electrode design</topic><topic>Canola Oil</topic><topic>Carbon - isolation & purification</topic><topic>Dielectrophoresis</topic><topic>Electricity</topic><topic>Electrophoresis - instrumentation</topic><topic>Fatty Acids, Monounsaturated - chemistry</topic><topic>Filtration - instrumentation</topic><topic>Flow-through</topic><topic>Microelectrodes</topic><topic>Nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Benjamin Y.</creatorcontrib><creatorcontrib>Madou, Marc J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Benjamin Y.</au><au>Madou, Marc J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D electrode designs for flow-through dielectrophoretic systems</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>26</volume><issue>19</issue><spage>3745</spage><epage>3757</epage><pages>3745-3757</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to ∇|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3‐D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3‐D shapes. In this paper, the use of 3‐D electrode designs for high‐throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3‐D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3‐D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3‐D electrode designs that are simple extensions of 2‐D designs are presented, and two novel electrode designs that are not based on 2‐D electrode designs are introduced. Finally, a proof‐of‐concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>16152666</pmid><doi>10.1002/elps.200500138</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2005-10, Vol.26 (19), p.3745-3757 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_68683521 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 3-D electrode design Canola Oil Carbon - isolation & purification Dielectrophoresis Electricity Electrophoresis - instrumentation Fatty Acids, Monounsaturated - chemistry Filtration - instrumentation Flow-through Microelectrodes Nanostructures |
title | 3-D electrode designs for flow-through dielectrophoretic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20electrode%20designs%20for%20flow-through%20dielectrophoretic%20systems&rft.jtitle=Electrophoresis&rft.au=Park,%20Benjamin%20Y.&rft.date=2005-10-01&rft.volume=26&rft.issue=19&rft.spage=3745&rft.epage=3757&rft.pages=3745-3757&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.200500138&rft_dat=%3Cproquest_cross%3E68683521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68683521&rft_id=info:pmid/16152666&rfr_iscdi=true |