Atomic Layer Deposition of Tungsten(III) Oxide Thin Films from W2(NMe2)6 and Water: Precursor-Based Control of Oxidation State in the Thin Film Material
The atomic layer deposition of W2O3 films was demonstrated employing W2(NMe2)6 and water as precursors with substrate temperatures between 140 and 240 °C. At 180 °C, surface saturative growth was achieved with W2(NMe2)6 vapor pulse lengths of ≥2 s. The growth rate was about 1.4 Å/cycle at substrate...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2006-08, Vol.128 (30), p.9638-9639 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9639 |
---|---|
container_issue | 30 |
container_start_page | 9638 |
container_title | Journal of the American Chemical Society |
container_volume | 128 |
creator | Dezelah El-Kadri, Oussama M Szilágyi, Imre M Campbell, Joseph M Arstila, Kai Niinistö, Lauri Winter, Charles H |
description | The atomic layer deposition of W2O3 films was demonstrated employing W2(NMe2)6 and water as precursors with substrate temperatures between 140 and 240 °C. At 180 °C, surface saturative growth was achieved with W2(NMe2)6 vapor pulse lengths of ≥2 s. The growth rate was about 1.4 Å/cycle at substrate temperatures between 140 and 200 °C. Growth rates of 1.60 and 2.10 Å/cycle were observed at 220 and 240 °C, respectively. In a series of films deposited at 180 °C, the film thicknesses varied linearly with the number of deposition cycles. Time-of-flight elastic recoil analyses demonstrated stoichiometric W2O3 films, with carbon, hydrogen, and nitrogen levels between 6.3 and 8.6, 11.9 and 14.2, and 4.6 and 5.0 at. %, respectively, at substrate temperatures of 160, 180, and 200 °C. The as-deposited films were amorphous. Atomic force microscopy showed root-mean-square surface roughnesses of 0.7 and 0.9 nm for films deposited at 180 and 200 °C, respectively. The resistivity of a film grown at 180 °C was 8500 microhm cm. |
doi_str_mv | 10.1021/ja063272w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68677680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68677680</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1521-d6afdcbbb9343a8fcde16c0277b4987becebf5f05de7fe92b51851f534e7a94e3</originalsourceid><addsrcrecordid>eNpNkcFu1DAQhi0EokvhwAsgX0DtIWA7iZ30VrYUFrbtQoN6tBxnTL0k9mInor1x5Rl4O56EhC4tp9FoPn2j-Qehp5S8pITRV2tFeMoE-34PzWjOSJJTxu-jGSGEJaLg6Q56FON6bDNW0Idoh_KC85zSGfp12PvOarxU1xDwEWx8tL31DnuDq8F9iT24vcVisY_PrmwDuLq0Dh_btovYBN_hC7Z3egJsn2PlGnyheggHv3_8xKsAegjRh-S1itDguXd98O2knUTq747zfuTxKOwv_zPjk8liVfsYPTCqjfBkW3fR5-M31fxdsjx7u5gfLhM1HkuThivT6LquyzRLVWF0A5RrwoSos7IQNWioTW5I3oAwULI6p0VOTZ5mIFSZQbqLXtx4N8F_GyD2srNRQ9sqB36IcgxLCF6QEXy2BYe6g0Zugu1UuJb_4hyB51tARa1aE5TTNt5xoiwKwSdRcsPZMd-r27kKXyUXqchltTqXH94fnX7iH1eyuvMqHeXaD8GNeUhK5PR-efv-9A-1t59u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68677680</pqid></control><display><type>article</type><title>Atomic Layer Deposition of Tungsten(III) Oxide Thin Films from W2(NMe2)6 and Water: Precursor-Based Control of Oxidation State in the Thin Film Material</title><source>ACS Publications</source><creator>Dezelah ; El-Kadri, Oussama M ; Szilágyi, Imre M ; Campbell, Joseph M ; Arstila, Kai ; Niinistö, Lauri ; Winter, Charles H</creator><creatorcontrib>Dezelah ; El-Kadri, Oussama M ; Szilágyi, Imre M ; Campbell, Joseph M ; Arstila, Kai ; Niinistö, Lauri ; Winter, Charles H</creatorcontrib><description>The atomic layer deposition of W2O3 films was demonstrated employing W2(NMe2)6 and water as precursors with substrate temperatures between 140 and 240 °C. At 180 °C, surface saturative growth was achieved with W2(NMe2)6 vapor pulse lengths of ≥2 s. The growth rate was about 1.4 Å/cycle at substrate temperatures between 140 and 200 °C. Growth rates of 1.60 and 2.10 Å/cycle were observed at 220 and 240 °C, respectively. In a series of films deposited at 180 °C, the film thicknesses varied linearly with the number of deposition cycles. Time-of-flight elastic recoil analyses demonstrated stoichiometric W2O3 films, with carbon, hydrogen, and nitrogen levels between 6.3 and 8.6, 11.9 and 14.2, and 4.6 and 5.0 at. %, respectively, at substrate temperatures of 160, 180, and 200 °C. The as-deposited films were amorphous. Atomic force microscopy showed root-mean-square surface roughnesses of 0.7 and 0.9 nm for films deposited at 180 and 200 °C, respectively. The resistivity of a film grown at 180 °C was 8500 microhm cm.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja063272w</identifier><identifier>PMID: 16866511</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics</subject><ispartof>Journal of the American Chemical Society, 2006-08, Vol.128 (30), p.9638-9639</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja063272w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja063272w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17988760$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16866511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dezelah</creatorcontrib><creatorcontrib>El-Kadri, Oussama M</creatorcontrib><creatorcontrib>Szilágyi, Imre M</creatorcontrib><creatorcontrib>Campbell, Joseph M</creatorcontrib><creatorcontrib>Arstila, Kai</creatorcontrib><creatorcontrib>Niinistö, Lauri</creatorcontrib><creatorcontrib>Winter, Charles H</creatorcontrib><title>Atomic Layer Deposition of Tungsten(III) Oxide Thin Films from W2(NMe2)6 and Water: Precursor-Based Control of Oxidation State in the Thin Film Material</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The atomic layer deposition of W2O3 films was demonstrated employing W2(NMe2)6 and water as precursors with substrate temperatures between 140 and 240 °C. At 180 °C, surface saturative growth was achieved with W2(NMe2)6 vapor pulse lengths of ≥2 s. The growth rate was about 1.4 Å/cycle at substrate temperatures between 140 and 200 °C. Growth rates of 1.60 and 2.10 Å/cycle were observed at 220 and 240 °C, respectively. In a series of films deposited at 180 °C, the film thicknesses varied linearly with the number of deposition cycles. Time-of-flight elastic recoil analyses demonstrated stoichiometric W2O3 films, with carbon, hydrogen, and nitrogen levels between 6.3 and 8.6, 11.9 and 14.2, and 4.6 and 5.0 at. %, respectively, at substrate temperatures of 160, 180, and 200 °C. The as-deposited films were amorphous. Atomic force microscopy showed root-mean-square surface roughnesses of 0.7 and 0.9 nm for films deposited at 180 and 200 °C, respectively. The resistivity of a film grown at 180 °C was 8500 microhm cm.</description><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNkcFu1DAQhi0EokvhwAsgX0DtIWA7iZ30VrYUFrbtQoN6tBxnTL0k9mInor1x5Rl4O56EhC4tp9FoPn2j-Qehp5S8pITRV2tFeMoE-34PzWjOSJJTxu-jGSGEJaLg6Q56FON6bDNW0Idoh_KC85zSGfp12PvOarxU1xDwEWx8tL31DnuDq8F9iT24vcVisY_PrmwDuLq0Dh_btovYBN_hC7Z3egJsn2PlGnyheggHv3_8xKsAegjRh-S1itDguXd98O2knUTq747zfuTxKOwv_zPjk8liVfsYPTCqjfBkW3fR5-M31fxdsjx7u5gfLhM1HkuThivT6LquyzRLVWF0A5RrwoSos7IQNWioTW5I3oAwULI6p0VOTZ5mIFSZQbqLXtx4N8F_GyD2srNRQ9sqB36IcgxLCF6QEXy2BYe6g0Zugu1UuJb_4hyB51tARa1aE5TTNt5xoiwKwSdRcsPZMd-r27kKXyUXqchltTqXH94fnX7iH1eyuvMqHeXaD8GNeUhK5PR-efv-9A-1t59u</recordid><startdate>20060802</startdate><enddate>20060802</enddate><creator>Dezelah</creator><creator>El-Kadri, Oussama M</creator><creator>Szilágyi, Imre M</creator><creator>Campbell, Joseph M</creator><creator>Arstila, Kai</creator><creator>Niinistö, Lauri</creator><creator>Winter, Charles H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20060802</creationdate><title>Atomic Layer Deposition of Tungsten(III) Oxide Thin Films from W2(NMe2)6 and Water: Precursor-Based Control of Oxidation State in the Thin Film Material</title><author>Dezelah ; El-Kadri, Oussama M ; Szilágyi, Imre M ; Campbell, Joseph M ; Arstila, Kai ; Niinistö, Lauri ; Winter, Charles H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1521-d6afdcbbb9343a8fcde16c0277b4987becebf5f05de7fe92b51851f534e7a94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dezelah</creatorcontrib><creatorcontrib>El-Kadri, Oussama M</creatorcontrib><creatorcontrib>Szilágyi, Imre M</creatorcontrib><creatorcontrib>Campbell, Joseph M</creatorcontrib><creatorcontrib>Arstila, Kai</creatorcontrib><creatorcontrib>Niinistö, Lauri</creatorcontrib><creatorcontrib>Winter, Charles H</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dezelah</au><au>El-Kadri, Oussama M</au><au>Szilágyi, Imre M</au><au>Campbell, Joseph M</au><au>Arstila, Kai</au><au>Niinistö, Lauri</au><au>Winter, Charles H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Layer Deposition of Tungsten(III) Oxide Thin Films from W2(NMe2)6 and Water: Precursor-Based Control of Oxidation State in the Thin Film Material</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2006-08-02</date><risdate>2006</risdate><volume>128</volume><issue>30</issue><spage>9638</spage><epage>9639</epage><pages>9638-9639</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>The atomic layer deposition of W2O3 films was demonstrated employing W2(NMe2)6 and water as precursors with substrate temperatures between 140 and 240 °C. At 180 °C, surface saturative growth was achieved with W2(NMe2)6 vapor pulse lengths of ≥2 s. The growth rate was about 1.4 Å/cycle at substrate temperatures between 140 and 200 °C. Growth rates of 1.60 and 2.10 Å/cycle were observed at 220 and 240 °C, respectively. In a series of films deposited at 180 °C, the film thicknesses varied linearly with the number of deposition cycles. Time-of-flight elastic recoil analyses demonstrated stoichiometric W2O3 films, with carbon, hydrogen, and nitrogen levels between 6.3 and 8.6, 11.9 and 14.2, and 4.6 and 5.0 at. %, respectively, at substrate temperatures of 160, 180, and 200 °C. The as-deposited films were amorphous. Atomic force microscopy showed root-mean-square surface roughnesses of 0.7 and 0.9 nm for films deposited at 180 and 200 °C, respectively. The resistivity of a film grown at 180 °C was 8500 microhm cm.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16866511</pmid><doi>10.1021/ja063272w</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2006-08, Vol.128 (30), p.9638-9639 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_68677680 |
source | ACS Publications |
subjects | Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Methods of deposition of films and coatings film growth and epitaxy Physics |
title | Atomic Layer Deposition of Tungsten(III) Oxide Thin Films from W2(NMe2)6 and Water: Precursor-Based Control of Oxidation State in the Thin Film Material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Layer%20Deposition%20of%20Tungsten(III)%20Oxide%20Thin%20Films%20from%20W2(NMe2)6%20and%20Water:%E2%80%89%20Precursor-Based%20Control%20of%20Oxidation%20State%20in%20the%20Thin%20Film%20Material&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Dezelah&rft.date=2006-08-02&rft.volume=128&rft.issue=30&rft.spage=9638&rft.epage=9639&rft.pages=9638-9639&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja063272w&rft_dat=%3Cproquest_pubme%3E68677680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68677680&rft_id=info:pmid/16866511&rfr_iscdi=true |