Initiated Chemical Vapor Deposition of Trivinyltrimethylcyclotrisiloxane for Biomaterial Coatings

Organosilicon polymers show great utility as both biocompatible and electrically insulating materials. In this work, thin films of a novel organosilicon polymer are synthesized by initiated chemical vapor deposition utilizing trivinyltrimethylcyclotrisiloxane as a monomer and tert-butyl peroxide as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2006-08, Vol.22 (16), p.7021-7026
Hauptverfasser: O'Shaughnessy, W. Shannan, Gao, Meiling, Gleason, Karen K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7026
container_issue 16
container_start_page 7021
container_title Langmuir
container_volume 22
creator O'Shaughnessy, W. Shannan
Gao, Meiling
Gleason, Karen K
description Organosilicon polymers show great utility as both biocompatible and electrically insulating materials. In this work, thin films of a novel organosilicon polymer are synthesized by initiated chemical vapor deposition utilizing trivinyltrimethylcyclotrisiloxane as a monomer and tert-butyl peroxide as a free-radical-generating initiator. Use of an initiator allows for the formation of polymer films at filament temperatures as low as 250 °C, significantly lower than those required to thermally polymerize the monomer species. The mild reaction conditions allow for the retention of all siloxane ring moieties within the resulting polymer. Films deposited at filament temperatures of 600 °C or higher exhibit damage to this moiety. The all-dry deposition process generates a highly cross-linked matrix material in which over 95% of the vinyl moieties present on the monomer units have been reacted out to form linear polymerized hydrocarbon chains. While each hydrocarbon backbone chain averages 8.9 monomer units in length, as evaluated by X-ray photoelectron spectroscopy analysis, each monomer unit is involved in three independent chains, resulting in polymer films of such high molecular weight that they are completely insoluble. Kinetic analysis of the deposition process indicates that the film formation rate is limited by the adsorption of reactive species to the deposition substrate, with an apparent activation energy of −23.2 kJ/mol with respect to the substrate temperature. These results are consistent with a surface growth mechanism, ideal for the coating of nonuniform or high aspect ratio substrates.
doi_str_mv 10.1021/la0607858
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68670114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68670114</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-fe94d4c417db30490ad9ca7b881beb136fd64bcb49484b83b2a9becd27f445193</originalsourceid><addsrcrecordid>eNptkM1OGzEURq2qqATaRV-gmg2VWAzYY8_YXpKUPykSqKRVxca69niKqWcc7Akib49RIrLpyrLuuUff_RD6SvAJwRU59YAbzEUtPqAJqStc1qLiH9EEc0ZLzhq6jw5SesQYS8rkJ7RPGtHQqq4nCK4HNzoYbVvMHmzvDPjiNyxDLH7YZUh5FoYidMUiumc3rP0YXW_Hh7U3a-ND_iXnwwsMtujyztSFPruiy5ZZgNENf9NntNeBT_bL9j1Evy7OF7Orcn5zeT07m5fAGB_LzkrWMsMIbzXFTGJopQGuhSDaakKbrm2YNppJJpgWVFcgtTVtxTvGaiLpIfq-8S5jeFrZNKreJWO9z-HCKql8MseEsAweb0ATQ0rRdmqZj4K4VgSrtz7Ve5-Z_baVrnRv2x25LTADR1sAUu6uizAYl3Ycl7zC9Vu6csO5NNqX9znEf6rhlNdqcXunLv7cT-_ufwo133nBJPUYVnHI3f0n4Cvv2ppv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68670114</pqid></control><display><type>article</type><title>Initiated Chemical Vapor Deposition of Trivinyltrimethylcyclotrisiloxane for Biomaterial Coatings</title><source>ACS Publications</source><source>MEDLINE</source><creator>O'Shaughnessy, W. Shannan ; Gao, Meiling ; Gleason, Karen K</creator><creatorcontrib>O'Shaughnessy, W. Shannan ; Gao, Meiling ; Gleason, Karen K</creatorcontrib><description>Organosilicon polymers show great utility as both biocompatible and electrically insulating materials. In this work, thin films of a novel organosilicon polymer are synthesized by initiated chemical vapor deposition utilizing trivinyltrimethylcyclotrisiloxane as a monomer and tert-butyl peroxide as a free-radical-generating initiator. Use of an initiator allows for the formation of polymer films at filament temperatures as low as 250 °C, significantly lower than those required to thermally polymerize the monomer species. The mild reaction conditions allow for the retention of all siloxane ring moieties within the resulting polymer. Films deposited at filament temperatures of 600 °C or higher exhibit damage to this moiety. The all-dry deposition process generates a highly cross-linked matrix material in which over 95% of the vinyl moieties present on the monomer units have been reacted out to form linear polymerized hydrocarbon chains. While each hydrocarbon backbone chain averages 8.9 monomer units in length, as evaluated by X-ray photoelectron spectroscopy analysis, each monomer unit is involved in three independent chains, resulting in polymer films of such high molecular weight that they are completely insoluble. Kinetic analysis of the deposition process indicates that the film formation rate is limited by the adsorption of reactive species to the deposition substrate, with an apparent activation energy of −23.2 kJ/mol with respect to the substrate temperature. These results are consistent with a surface growth mechanism, ideal for the coating of nonuniform or high aspect ratio substrates.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la0607858</identifier><identifier>PMID: 16863255</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Coated Materials, Biocompatible - chemistry ; Exact sciences and technology ; General and physical chemistry ; Hot Temperature ; Kinetics ; Siloxanes - chemistry ; Spectrometry, X-Ray Emission ; Surface physical chemistry ; tert-Butylhydroperoxide - chemistry ; Volatilization</subject><ispartof>Langmuir, 2006-08, Vol.22 (16), p.7021-7026</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-fe94d4c417db30490ad9ca7b881beb136fd64bcb49484b83b2a9becd27f445193</citedby><cites>FETCH-LOGICAL-a447t-fe94d4c417db30490ad9ca7b881beb136fd64bcb49484b83b2a9becd27f445193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la0607858$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la0607858$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17972059$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16863255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Shaughnessy, W. Shannan</creatorcontrib><creatorcontrib>Gao, Meiling</creatorcontrib><creatorcontrib>Gleason, Karen K</creatorcontrib><title>Initiated Chemical Vapor Deposition of Trivinyltrimethylcyclotrisiloxane for Biomaterial Coatings</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Organosilicon polymers show great utility as both biocompatible and electrically insulating materials. In this work, thin films of a novel organosilicon polymer are synthesized by initiated chemical vapor deposition utilizing trivinyltrimethylcyclotrisiloxane as a monomer and tert-butyl peroxide as a free-radical-generating initiator. Use of an initiator allows for the formation of polymer films at filament temperatures as low as 250 °C, significantly lower than those required to thermally polymerize the monomer species. The mild reaction conditions allow for the retention of all siloxane ring moieties within the resulting polymer. Films deposited at filament temperatures of 600 °C or higher exhibit damage to this moiety. The all-dry deposition process generates a highly cross-linked matrix material in which over 95% of the vinyl moieties present on the monomer units have been reacted out to form linear polymerized hydrocarbon chains. While each hydrocarbon backbone chain averages 8.9 monomer units in length, as evaluated by X-ray photoelectron spectroscopy analysis, each monomer unit is involved in three independent chains, resulting in polymer films of such high molecular weight that they are completely insoluble. Kinetic analysis of the deposition process indicates that the film formation rate is limited by the adsorption of reactive species to the deposition substrate, with an apparent activation energy of −23.2 kJ/mol with respect to the substrate temperature. These results are consistent with a surface growth mechanism, ideal for the coating of nonuniform or high aspect ratio substrates.</description><subject>Chemistry</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hot Temperature</subject><subject>Kinetics</subject><subject>Siloxanes - chemistry</subject><subject>Spectrometry, X-Ray Emission</subject><subject>Surface physical chemistry</subject><subject>tert-Butylhydroperoxide - chemistry</subject><subject>Volatilization</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1OGzEURq2qqATaRV-gmg2VWAzYY8_YXpKUPykSqKRVxca69niKqWcc7Akib49RIrLpyrLuuUff_RD6SvAJwRU59YAbzEUtPqAJqStc1qLiH9EEc0ZLzhq6jw5SesQYS8rkJ7RPGtHQqq4nCK4HNzoYbVvMHmzvDPjiNyxDLH7YZUh5FoYidMUiumc3rP0YXW_Hh7U3a-ND_iXnwwsMtujyztSFPruiy5ZZgNENf9NntNeBT_bL9j1Evy7OF7Orcn5zeT07m5fAGB_LzkrWMsMIbzXFTGJopQGuhSDaakKbrm2YNppJJpgWVFcgtTVtxTvGaiLpIfq-8S5jeFrZNKreJWO9z-HCKql8MseEsAweb0ATQ0rRdmqZj4K4VgSrtz7Ve5-Z_baVrnRv2x25LTADR1sAUu6uizAYl3Ycl7zC9Vu6csO5NNqX9znEf6rhlNdqcXunLv7cT-_ufwo133nBJPUYVnHI3f0n4Cvv2ppv</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>O'Shaughnessy, W. Shannan</creator><creator>Gao, Meiling</creator><creator>Gleason, Karen K</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Initiated Chemical Vapor Deposition of Trivinyltrimethylcyclotrisiloxane for Biomaterial Coatings</title><author>O'Shaughnessy, W. Shannan ; Gao, Meiling ; Gleason, Karen K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-fe94d4c417db30490ad9ca7b881beb136fd64bcb49484b83b2a9becd27f445193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemistry</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hot Temperature</topic><topic>Kinetics</topic><topic>Siloxanes - chemistry</topic><topic>Spectrometry, X-Ray Emission</topic><topic>Surface physical chemistry</topic><topic>tert-Butylhydroperoxide - chemistry</topic><topic>Volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Shaughnessy, W. Shannan</creatorcontrib><creatorcontrib>Gao, Meiling</creatorcontrib><creatorcontrib>Gleason, Karen K</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Shaughnessy, W. Shannan</au><au>Gao, Meiling</au><au>Gleason, Karen K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initiated Chemical Vapor Deposition of Trivinyltrimethylcyclotrisiloxane for Biomaterial Coatings</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>22</volume><issue>16</issue><spage>7021</spage><epage>7026</epage><pages>7021-7026</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Organosilicon polymers show great utility as both biocompatible and electrically insulating materials. In this work, thin films of a novel organosilicon polymer are synthesized by initiated chemical vapor deposition utilizing trivinyltrimethylcyclotrisiloxane as a monomer and tert-butyl peroxide as a free-radical-generating initiator. Use of an initiator allows for the formation of polymer films at filament temperatures as low as 250 °C, significantly lower than those required to thermally polymerize the monomer species. The mild reaction conditions allow for the retention of all siloxane ring moieties within the resulting polymer. Films deposited at filament temperatures of 600 °C or higher exhibit damage to this moiety. The all-dry deposition process generates a highly cross-linked matrix material in which over 95% of the vinyl moieties present on the monomer units have been reacted out to form linear polymerized hydrocarbon chains. While each hydrocarbon backbone chain averages 8.9 monomer units in length, as evaluated by X-ray photoelectron spectroscopy analysis, each monomer unit is involved in three independent chains, resulting in polymer films of such high molecular weight that they are completely insoluble. Kinetic analysis of the deposition process indicates that the film formation rate is limited by the adsorption of reactive species to the deposition substrate, with an apparent activation energy of −23.2 kJ/mol with respect to the substrate temperature. These results are consistent with a surface growth mechanism, ideal for the coating of nonuniform or high aspect ratio substrates.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16863255</pmid><doi>10.1021/la0607858</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2006-08, Vol.22 (16), p.7021-7026
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_68670114
source ACS Publications; MEDLINE
subjects Chemistry
Coated Materials, Biocompatible - chemistry
Exact sciences and technology
General and physical chemistry
Hot Temperature
Kinetics
Siloxanes - chemistry
Spectrometry, X-Ray Emission
Surface physical chemistry
tert-Butylhydroperoxide - chemistry
Volatilization
title Initiated Chemical Vapor Deposition of Trivinyltrimethylcyclotrisiloxane for Biomaterial Coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initiated%20Chemical%20Vapor%20Deposition%20of%20Trivinyltrimethylcyclotrisiloxane%20for%20Biomaterial%20Coatings&rft.jtitle=Langmuir&rft.au=O'Shaughnessy,%20W.%20Shannan&rft.date=2006-08-01&rft.volume=22&rft.issue=16&rft.spage=7021&rft.epage=7026&rft.pages=7021-7026&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la0607858&rft_dat=%3Cproquest_cross%3E68670114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68670114&rft_id=info:pmid/16863255&rfr_iscdi=true