Mean-field description of jamming in noncohesive frictionless particulate systems
A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both stat...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-08, Vol.72 (2 Pt 1), p.021303-021303, Article 021303 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 021303 |
---|---|
container_issue | 2 Pt 1 |
container_start_page | 021303 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 72 |
creator | Head, D A |
description | A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests that the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided. |
doi_str_mv | 10.1103/PhysRevE.72.021303 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68647031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68647031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-d8c12d444421ede020938856d733db37bbcb70f7d013674872033cf7566159913</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxSbE9sJ0tUlYdUxEOwthJ7Ql3lhZ1U6t_TqEXM5s7i3Ls4hFwzOmeMwt3behc-cLucKz6nnAGFEzJlQtCYg5Kn4w9ZDEqICbkIYUMpcEiTczJhkmVSCD4l7y-YN3HpsLKRxWC863rXNlFbRpu8rl3zHbkmatrGtGsMbotR6Z0ZkQpDiLrc984MVd5jFHahxzpckrMyrwJeHXNGvh6Wn4unePX6-Ly4X8UGKOtjmxrGbbI_ztAi5TSDNBXSKgBbgCoKUyhaKksZSJWkilMAUyohJRNZxmBGbg-7nW9_Bgy9rl0wWFV5g-0QtExloiiMID-AxrcheCx1512d-51mVI8i9Z9Irbg-iNyXbo7rQ1Gj_a8czcEvzNZwdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68647031</pqid></control><display><type>article</type><title>Mean-field description of jamming in noncohesive frictionless particulate systems</title><source>American Physical Society Journals</source><creator>Head, D A</creator><creatorcontrib>Head, D A</creatorcontrib><description>A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests that the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.72.021303</identifier><identifier>PMID: 16196552</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-08, Vol.72 (2 Pt 1), p.021303-021303, Article 021303</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-d8c12d444421ede020938856d733db37bbcb70f7d013674872033cf7566159913</citedby><cites>FETCH-LOGICAL-c301t-d8c12d444421ede020938856d733db37bbcb70f7d013674872033cf7566159913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16196552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Head, D A</creatorcontrib><title>Mean-field description of jamming in noncohesive frictionless particulate systems</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests that the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxSbE9sJ0tUlYdUxEOwthJ7Ql3lhZ1U6t_TqEXM5s7i3Ls4hFwzOmeMwt3behc-cLucKz6nnAGFEzJlQtCYg5Kn4w9ZDEqICbkIYUMpcEiTczJhkmVSCD4l7y-YN3HpsLKRxWC863rXNlFbRpu8rl3zHbkmatrGtGsMbotR6Z0ZkQpDiLrc984MVd5jFHahxzpckrMyrwJeHXNGvh6Wn4unePX6-Ly4X8UGKOtjmxrGbbI_ztAi5TSDNBXSKgBbgCoKUyhaKksZSJWkilMAUyohJRNZxmBGbg-7nW9_Bgy9rl0wWFV5g-0QtExloiiMID-AxrcheCx1512d-51mVI8i9Z9Irbg-iNyXbo7rQ1Gj_a8czcEvzNZwdw</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Head, D A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200508</creationdate><title>Mean-field description of jamming in noncohesive frictionless particulate systems</title><author>Head, D A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-d8c12d444421ede020938856d733db37bbcb70f7d013674872033cf7566159913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Head, D A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Head, D A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean-field description of jamming in noncohesive frictionless particulate systems</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2005-08</date><risdate>2005</risdate><volume>72</volume><issue>2 Pt 1</issue><spage>021303</spage><epage>021303</epage><pages>021303-021303</pages><artnum>021303</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests that the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.</abstract><cop>United States</cop><pmid>16196552</pmid><doi>10.1103/PhysRevE.72.021303</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-08, Vol.72 (2 Pt 1), p.021303-021303, Article 021303 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_68647031 |
source | American Physical Society Journals |
title | Mean-field description of jamming in noncohesive frictionless particulate systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean-field%20description%20of%20jamming%20in%20noncohesive%20frictionless%20particulate%20systems&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Head,%20D%20A&rft.date=2005-08&rft.volume=72&rft.issue=2%20Pt%201&rft.spage=021303&rft.epage=021303&rft.pages=021303-021303&rft.artnum=021303&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.72.021303&rft_dat=%3Cproquest_cross%3E68647031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68647031&rft_id=info:pmid/16196552&rfr_iscdi=true |