Mean-field description of jamming in noncohesive frictionless particulate systems

A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-08, Vol.72 (2 Pt 1), p.021303-021303, Article 021303
1. Verfasser: Head, D A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 021303
container_issue 2 Pt 1
container_start_page 021303
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 72
creator Head, D A
description A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests that the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.
doi_str_mv 10.1103/PhysRevE.72.021303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68647031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68647031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-d8c12d444421ede020938856d733db37bbcb70f7d013674872033cf7566159913</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxSbE9sJ0tUlYdUxEOwthJ7Ql3lhZ1U6t_TqEXM5s7i3Ls4hFwzOmeMwt3behc-cLucKz6nnAGFEzJlQtCYg5Kn4w9ZDEqICbkIYUMpcEiTczJhkmVSCD4l7y-YN3HpsLKRxWC863rXNlFbRpu8rl3zHbkmatrGtGsMbotR6Z0ZkQpDiLrc984MVd5jFHahxzpckrMyrwJeHXNGvh6Wn4unePX6-Ly4X8UGKOtjmxrGbbI_ztAi5TSDNBXSKgBbgCoKUyhaKksZSJWkilMAUyohJRNZxmBGbg-7nW9_Bgy9rl0wWFV5g-0QtExloiiMID-AxrcheCx1512d-51mVI8i9Z9Irbg-iNyXbo7rQ1Gj_a8czcEvzNZwdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68647031</pqid></control><display><type>article</type><title>Mean-field description of jamming in noncohesive frictionless particulate systems</title><source>American Physical Society Journals</source><creator>Head, D A</creator><creatorcontrib>Head, D A</creatorcontrib><description>A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests that the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.72.021303</identifier><identifier>PMID: 16196552</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-08, Vol.72 (2 Pt 1), p.021303-021303, Article 021303</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-d8c12d444421ede020938856d733db37bbcb70f7d013674872033cf7566159913</citedby><cites>FETCH-LOGICAL-c301t-d8c12d444421ede020938856d733db37bbcb70f7d013674872033cf7566159913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16196552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Head, D A</creatorcontrib><title>Mean-field description of jamming in noncohesive frictionless particulate systems</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests that the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxSbE9sJ0tUlYdUxEOwthJ7Ql3lhZ1U6t_TqEXM5s7i3Ls4hFwzOmeMwt3behc-cLucKz6nnAGFEzJlQtCYg5Kn4w9ZDEqICbkIYUMpcEiTczJhkmVSCD4l7y-YN3HpsLKRxWC863rXNlFbRpu8rl3zHbkmatrGtGsMbotR6Z0ZkQpDiLrc984MVd5jFHahxzpckrMyrwJeHXNGvh6Wn4unePX6-Ly4X8UGKOtjmxrGbbI_ztAi5TSDNBXSKgBbgCoKUyhaKksZSJWkilMAUyohJRNZxmBGbg-7nW9_Bgy9rl0wWFV5g-0QtExloiiMID-AxrcheCx1512d-51mVI8i9Z9Irbg-iNyXbo7rQ1Gj_a8czcEvzNZwdw</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Head, D A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200508</creationdate><title>Mean-field description of jamming in noncohesive frictionless particulate systems</title><author>Head, D A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-d8c12d444421ede020938856d733db37bbcb70f7d013674872033cf7566159913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Head, D A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Head, D A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean-field description of jamming in noncohesive frictionless particulate systems</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2005-08</date><risdate>2005</risdate><volume>72</volume><issue>2 Pt 1</issue><spage>021303</spage><epage>021303</epage><pages>021303-021303</pages><artnum>021303</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the nontrivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests that the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.</abstract><cop>United States</cop><pmid>16196552</pmid><doi>10.1103/PhysRevE.72.021303</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-08, Vol.72 (2 Pt 1), p.021303-021303, Article 021303
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_68647031
source American Physical Society Journals
title Mean-field description of jamming in noncohesive frictionless particulate systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean-field%20description%20of%20jamming%20in%20noncohesive%20frictionless%20particulate%20systems&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Head,%20D%20A&rft.date=2005-08&rft.volume=72&rft.issue=2%20Pt%201&rft.spage=021303&rft.epage=021303&rft.pages=021303-021303&rft.artnum=021303&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.72.021303&rft_dat=%3Cproquest_cross%3E68647031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68647031&rft_id=info:pmid/16196552&rfr_iscdi=true