Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization
Current hybridization protocols on microarrays are slow and need skilled personnel. Microfluidics is an emerging science that enables the processing of minute volumes of liquids to perform chemical, biochemical, or enzymatic analyzes. The merging of microfluidics and microarray technologies constitu...
Gespeichert in:
Veröffentlicht in: | Clinical chemistry (Baltimore, Md.) Md.), 2005-10, Vol.51 (10), p.1836-1844 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1844 |
---|---|
container_issue | 10 |
container_start_page | 1836 |
container_title | Clinical chemistry (Baltimore, Md.) |
container_volume | 51 |
creator | Peytavi, Regis Raymond, Frederic R Gagne, Dominic Picard, Francois J Jia, Guangyao Zoval, Jim Madou, Marc Boissinot, Karel Boissinot, Maurice Bissonnette, Luc Ouellette, Marc Bergeron, Michel G |
description | Current hybridization protocols on microarrays are slow and need skilled personnel. Microfluidics is an emerging science that enables the processing of minute volumes of liquids to perform chemical, biochemical, or enzymatic analyzes. The merging of microfluidics and microarray technologies constitutes an elegant solution that will automate and speed up microarray hybridization.
We developed a microfluidic flow cell consisting of a network of chambers and channels molded into a polydimethylsiloxane substrate. The substrate was aligned and reversibly bound to the microarray printed on a standard glass slide to form a functional microfluidic unit. The microfluidic units were placed on an engraved, disc-shaped support fixed on a rotational device. Centrifugal forces drove the sample and buffers directly onto the microarray surface.
This microfluidic system increased the hybridization signal by approximately 10fold compared with a passive system that made use of 10 times more sample. By means of a 15-min automated hybridization process, performed at room temperature, we demonstrated the discrimination of 4 clinically relevant Staphylococcus species that differ by as little as a single-nucleotide polymorphism. This process included hybridization, washing, rinsing, and drying steps and did not require any purification of target nucleic acids. This platform was sensitive enough to detect 10 PCR-amplified bacterial genomes.
This removable microfluidic system for performing microarray hybridization on glass slides is promising for molecular diagnostics and gene profiling. |
doi_str_mv | 10.1373/clinchem.2005.052845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68633294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20155124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-d8a5d12c4869a5f780393a950360109403b1ff5a76bd211f5ba47ac3dcb60dd03</originalsourceid><addsrcrecordid>eNqNkVuLFDEQRoMo7rj6D0QawdvDjFW5dsCXZb2ssiKIPod0knay9GVMuh3GX29mZ2TBl_UpFJyvUnyHkMcIK2SKvXZdHNw69CsKIFYgaM3FHbJAwWBZC4l3yQIA9FIjVyfkQc5XZeSqlvfJCUoEraBekE-fo0tj283RR1e9Db-iC1U7puqr3URfvXyDourj8Ko6m6ext1Pw1XXCpmR31cWuSSX4205xHB6Se63tcnh0fE_J9_fvvp1fLC-_fPh4fna5dELraelrKzxSx2uprWhVDUwzqwUwCeUqDqzBthVWycZTxFY0livrmHeNBO-BnZLnh72bNP6cQ55MH7MLXWeHMM7ZyFoyRjW_FaRaUQpc_wfIhCxd3g4CCoF0__XTf8CrcU5DqcVQ5IC82CoQP0Clz5xTaM0mxd6mnUEwe8fmr2Ozd2wOjkvsyXH33PTB34SOUgvw7AjY7GzXJju4mG84hZxzqQr34sCt44_1NqZgcm-7rqxFs91uBV7fUTPJ_gB12Lui</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214014284</pqid></control><display><type>article</type><title>Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Peytavi, Regis ; Raymond, Frederic R ; Gagne, Dominic ; Picard, Francois J ; Jia, Guangyao ; Zoval, Jim ; Madou, Marc ; Boissinot, Karel ; Boissinot, Maurice ; Bissonnette, Luc ; Ouellette, Marc ; Bergeron, Michel G</creator><creatorcontrib>Peytavi, Regis ; Raymond, Frederic R ; Gagne, Dominic ; Picard, Francois J ; Jia, Guangyao ; Zoval, Jim ; Madou, Marc ; Boissinot, Karel ; Boissinot, Maurice ; Bissonnette, Luc ; Ouellette, Marc ; Bergeron, Michel G</creatorcontrib><description>Current hybridization protocols on microarrays are slow and need skilled personnel. Microfluidics is an emerging science that enables the processing of minute volumes of liquids to perform chemical, biochemical, or enzymatic analyzes. The merging of microfluidics and microarray technologies constitutes an elegant solution that will automate and speed up microarray hybridization.
We developed a microfluidic flow cell consisting of a network of chambers and channels molded into a polydimethylsiloxane substrate. The substrate was aligned and reversibly bound to the microarray printed on a standard glass slide to form a functional microfluidic unit. The microfluidic units were placed on an engraved, disc-shaped support fixed on a rotational device. Centrifugal forces drove the sample and buffers directly onto the microarray surface.
This microfluidic system increased the hybridization signal by approximately 10fold compared with a passive system that made use of 10 times more sample. By means of a 15-min automated hybridization process, performed at room temperature, we demonstrated the discrimination of 4 clinically relevant Staphylococcus species that differ by as little as a single-nucleotide polymorphism. This process included hybridization, washing, rinsing, and drying steps and did not require any purification of target nucleic acids. This platform was sensitive enough to detect 10 PCR-amplified bacterial genomes.
This removable microfluidic system for performing microarray hybridization on glass slides is promising for molecular diagnostics and gene profiling.</description><identifier>ISSN: 0009-9147</identifier><identifier>EISSN: 1530-8561</identifier><identifier>DOI: 10.1373/clinchem.2005.052845</identifier><identifier>PMID: 16109708</identifier><identifier>CODEN: CLCHAU</identifier><language>eng</language><publisher>Washington, DC: Am Assoc Clin Chem</publisher><subject>Analytical, structural and metabolic biochemistry ; Automation ; Biological and medical sciences ; Chemical reactions ; Dimethylpolysiloxanes - chemistry ; DNA - chemistry ; Fundamental and applied biological sciences. Psychology ; Hybridization ; Infectious diseases ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidics - instrumentation ; Microfluidics - methods ; Nucleic Acid Hybridization ; Nucleic acids ; Oligonucleotide Array Sequence Analysis - instrumentation ; Oligonucleotide Array Sequence Analysis - methods ; Sensitivity and Specificity ; Signal transduction ; Species Specificity ; Staphylococcus ; Staphylococcus - classification ; Staphylococcus - genetics ; Surface Properties</subject><ispartof>Clinical chemistry (Baltimore, Md.), 2005-10, Vol.51 (10), p.1836-1844</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright American Association for Clinical Chemistry Oct 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-d8a5d12c4869a5f780393a950360109403b1ff5a76bd211f5ba47ac3dcb60dd03</citedby><cites>FETCH-LOGICAL-c599t-d8a5d12c4869a5f780393a950360109403b1ff5a76bd211f5ba47ac3dcb60dd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17144467$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16109708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peytavi, Regis</creatorcontrib><creatorcontrib>Raymond, Frederic R</creatorcontrib><creatorcontrib>Gagne, Dominic</creatorcontrib><creatorcontrib>Picard, Francois J</creatorcontrib><creatorcontrib>Jia, Guangyao</creatorcontrib><creatorcontrib>Zoval, Jim</creatorcontrib><creatorcontrib>Madou, Marc</creatorcontrib><creatorcontrib>Boissinot, Karel</creatorcontrib><creatorcontrib>Boissinot, Maurice</creatorcontrib><creatorcontrib>Bissonnette, Luc</creatorcontrib><creatorcontrib>Ouellette, Marc</creatorcontrib><creatorcontrib>Bergeron, Michel G</creatorcontrib><title>Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization</title><title>Clinical chemistry (Baltimore, Md.)</title><addtitle>Clin Chem</addtitle><description>Current hybridization protocols on microarrays are slow and need skilled personnel. Microfluidics is an emerging science that enables the processing of minute volumes of liquids to perform chemical, biochemical, or enzymatic analyzes. The merging of microfluidics and microarray technologies constitutes an elegant solution that will automate and speed up microarray hybridization.
We developed a microfluidic flow cell consisting of a network of chambers and channels molded into a polydimethylsiloxane substrate. The substrate was aligned and reversibly bound to the microarray printed on a standard glass slide to form a functional microfluidic unit. The microfluidic units were placed on an engraved, disc-shaped support fixed on a rotational device. Centrifugal forces drove the sample and buffers directly onto the microarray surface.
This microfluidic system increased the hybridization signal by approximately 10fold compared with a passive system that made use of 10 times more sample. By means of a 15-min automated hybridization process, performed at room temperature, we demonstrated the discrimination of 4 clinically relevant Staphylococcus species that differ by as little as a single-nucleotide polymorphism. This process included hybridization, washing, rinsing, and drying steps and did not require any purification of target nucleic acids. This platform was sensitive enough to detect 10 PCR-amplified bacterial genomes.
This removable microfluidic system for performing microarray hybridization on glass slides is promising for molecular diagnostics and gene profiling.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Automation</subject><subject>Biological and medical sciences</subject><subject>Chemical reactions</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>DNA - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hybridization</subject><subject>Infectious diseases</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Nucleic Acid Hybridization</subject><subject>Nucleic acids</subject><subject>Oligonucleotide Array Sequence Analysis - instrumentation</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Sensitivity and Specificity</subject><subject>Signal transduction</subject><subject>Species Specificity</subject><subject>Staphylococcus</subject><subject>Staphylococcus - classification</subject><subject>Staphylococcus - genetics</subject><subject>Surface Properties</subject><issn>0009-9147</issn><issn>1530-8561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkVuLFDEQRoMo7rj6D0QawdvDjFW5dsCXZb2ssiKIPod0knay9GVMuh3GX29mZ2TBl_UpFJyvUnyHkMcIK2SKvXZdHNw69CsKIFYgaM3FHbJAwWBZC4l3yQIA9FIjVyfkQc5XZeSqlvfJCUoEraBekE-fo0tj283RR1e9Db-iC1U7puqr3URfvXyDourj8Ko6m6ext1Pw1XXCpmR31cWuSSX4205xHB6Se63tcnh0fE_J9_fvvp1fLC-_fPh4fna5dELraelrKzxSx2uprWhVDUwzqwUwCeUqDqzBthVWycZTxFY0livrmHeNBO-BnZLnh72bNP6cQ55MH7MLXWeHMM7ZyFoyRjW_FaRaUQpc_wfIhCxd3g4CCoF0__XTf8CrcU5DqcVQ5IC82CoQP0Clz5xTaM0mxd6mnUEwe8fmr2Ozd2wOjkvsyXH33PTB34SOUgvw7AjY7GzXJju4mG84hZxzqQr34sCt44_1NqZgcm-7rqxFs91uBV7fUTPJ_gB12Lui</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Peytavi, Regis</creator><creator>Raymond, Frederic R</creator><creator>Gagne, Dominic</creator><creator>Picard, Francois J</creator><creator>Jia, Guangyao</creator><creator>Zoval, Jim</creator><creator>Madou, Marc</creator><creator>Boissinot, Karel</creator><creator>Boissinot, Maurice</creator><creator>Bissonnette, Luc</creator><creator>Ouellette, Marc</creator><creator>Bergeron, Michel G</creator><general>Am Assoc Clin Chem</general><general>American Association for Clinical Chemistry</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4U-</scope><scope>7QO</scope><scope>7RV</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7QL</scope><scope>7TB</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20051001</creationdate><title>Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization</title><author>Peytavi, Regis ; Raymond, Frederic R ; Gagne, Dominic ; Picard, Francois J ; Jia, Guangyao ; Zoval, Jim ; Madou, Marc ; Boissinot, Karel ; Boissinot, Maurice ; Bissonnette, Luc ; Ouellette, Marc ; Bergeron, Michel G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-d8a5d12c4869a5f780393a950360109403b1ff5a76bd211f5ba47ac3dcb60dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Automation</topic><topic>Biological and medical sciences</topic><topic>Chemical reactions</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>DNA - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hybridization</topic><topic>Infectious diseases</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Nucleic Acid Hybridization</topic><topic>Nucleic acids</topic><topic>Oligonucleotide Array Sequence Analysis - instrumentation</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Sensitivity and Specificity</topic><topic>Signal transduction</topic><topic>Species Specificity</topic><topic>Staphylococcus</topic><topic>Staphylococcus - classification</topic><topic>Staphylococcus - genetics</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peytavi, Regis</creatorcontrib><creatorcontrib>Raymond, Frederic R</creatorcontrib><creatorcontrib>Gagne, Dominic</creatorcontrib><creatorcontrib>Picard, Francois J</creatorcontrib><creatorcontrib>Jia, Guangyao</creatorcontrib><creatorcontrib>Zoval, Jim</creatorcontrib><creatorcontrib>Madou, Marc</creatorcontrib><creatorcontrib>Boissinot, Karel</creatorcontrib><creatorcontrib>Boissinot, Maurice</creatorcontrib><creatorcontrib>Bissonnette, Luc</creatorcontrib><creatorcontrib>Ouellette, Marc</creatorcontrib><creatorcontrib>Bergeron, Michel G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peytavi, Regis</au><au>Raymond, Frederic R</au><au>Gagne, Dominic</au><au>Picard, Francois J</au><au>Jia, Guangyao</au><au>Zoval, Jim</au><au>Madou, Marc</au><au>Boissinot, Karel</au><au>Boissinot, Maurice</au><au>Bissonnette, Luc</au><au>Ouellette, Marc</au><au>Bergeron, Michel G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization</atitle><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle><addtitle>Clin Chem</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>51</volume><issue>10</issue><spage>1836</spage><epage>1844</epage><pages>1836-1844</pages><issn>0009-9147</issn><eissn>1530-8561</eissn><coden>CLCHAU</coden><abstract>Current hybridization protocols on microarrays are slow and need skilled personnel. Microfluidics is an emerging science that enables the processing of minute volumes of liquids to perform chemical, biochemical, or enzymatic analyzes. The merging of microfluidics and microarray technologies constitutes an elegant solution that will automate and speed up microarray hybridization.
We developed a microfluidic flow cell consisting of a network of chambers and channels molded into a polydimethylsiloxane substrate. The substrate was aligned and reversibly bound to the microarray printed on a standard glass slide to form a functional microfluidic unit. The microfluidic units were placed on an engraved, disc-shaped support fixed on a rotational device. Centrifugal forces drove the sample and buffers directly onto the microarray surface.
This microfluidic system increased the hybridization signal by approximately 10fold compared with a passive system that made use of 10 times more sample. By means of a 15-min automated hybridization process, performed at room temperature, we demonstrated the discrimination of 4 clinically relevant Staphylococcus species that differ by as little as a single-nucleotide polymorphism. This process included hybridization, washing, rinsing, and drying steps and did not require any purification of target nucleic acids. This platform was sensitive enough to detect 10 PCR-amplified bacterial genomes.
This removable microfluidic system for performing microarray hybridization on glass slides is promising for molecular diagnostics and gene profiling.</abstract><cop>Washington, DC</cop><pub>Am Assoc Clin Chem</pub><pmid>16109708</pmid><doi>10.1373/clinchem.2005.052845</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9147 |
ispartof | Clinical chemistry (Baltimore, Md.), 2005-10, Vol.51 (10), p.1836-1844 |
issn | 0009-9147 1530-8561 |
language | eng |
recordid | cdi_proquest_miscellaneous_68633294 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Analytical, structural and metabolic biochemistry Automation Biological and medical sciences Chemical reactions Dimethylpolysiloxanes - chemistry DNA - chemistry Fundamental and applied biological sciences. Psychology Hybridization Infectious diseases Investigative techniques, diagnostic techniques (general aspects) Medical sciences Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microfluidics - instrumentation Microfluidics - methods Nucleic Acid Hybridization Nucleic acids Oligonucleotide Array Sequence Analysis - instrumentation Oligonucleotide Array Sequence Analysis - methods Sensitivity and Specificity Signal transduction Species Specificity Staphylococcus Staphylococcus - classification Staphylococcus - genetics Surface Properties |
title | Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Device%20for%20Rapid%20(%3C15%20min)%20Automated%20Microarray%20Hybridization&rft.jtitle=Clinical%20chemistry%20(Baltimore,%20Md.)&rft.au=Peytavi,%20Regis&rft.date=2005-10-01&rft.volume=51&rft.issue=10&rft.spage=1836&rft.epage=1844&rft.pages=1836-1844&rft.issn=0009-9147&rft.eissn=1530-8561&rft.coden=CLCHAU&rft_id=info:doi/10.1373/clinchem.2005.052845&rft_dat=%3Cproquest_cross%3E20155124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214014284&rft_id=info:pmid/16109708&rfr_iscdi=true |