Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis
Summary Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions ar...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2006-07, Vol.47 (1), p.124-139 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | 1 |
container_start_page | 124 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 47 |
creator | Oh, Eunkyoo Yamaguchi, Shinjiro Kamiya, Yuji Bae, Gabyong Chung, Won‐Il Choi, Giltsu |
description | Summary
Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome‐interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA‐ and PHYB‐dependent germination assays. Consistent with these gene‐expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far‐red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation. |
doi_str_mv | 10.1111/j.1365-313X.2006.02773.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68621947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1062566721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5953-4bdc53a3d1391dd2e089bd9b1c41fe1b6963121c2671dd04e448cc58d1df137c3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpaTZp_0IRhfZmVyPJkn3oIYR-pCw0hxR6E7Ike7XY1lay0-TfV84uDfTUQTAj5pnhZV6EMJAScnzYl8BEVTBgP0tKiCgJlZKV98_Q5m_jOdqQRpBCcqBn6DylPSEgmeAv0RkIyQlwuUHT1ve7GWsz-zs9u4TnncPW9VFbPfsw4dDhm-tthQ8xzM5PeA5rOeYPTs5Z3Ls4-unIzrsYln6He9-2LrphyHx-l1G33oZD8ukVetHpIbnXp3yBfnz-dHv1tdh-_3J9dbktTNVUrOCtNRXTzAJrwFrqSN20tmnBcOgctKIRDCgYKmRuE-44r42pagu2AyYNu0Dvj3uz1l-LS7MafTJZkZ5cWJIStaDQcJnBt_-A-7DEKWtTFFgFUjCaofoImRhSiq5Th-hHHR8UELUaovZqvbta765WQ9SjIeo-j7457V_a0dmnwZMDGXh3AnQyeuiinoxPT5ysBa9qnrmPR-63H9zDfwtQtzff1or9Aa10p2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213517632</pqid></control><display><type>article</type><title>Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Oh, Eunkyoo ; Yamaguchi, Shinjiro ; Kamiya, Yuji ; Bae, Gabyong ; Chung, Won‐Il ; Choi, Giltsu</creator><creatorcontrib>Oh, Eunkyoo ; Yamaguchi, Shinjiro ; Kamiya, Yuji ; Bae, Gabyong ; Chung, Won‐Il ; Choi, Giltsu</creatorcontrib><description>Summary
Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome‐interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA‐ and PHYB‐dependent germination assays. Consistent with these gene‐expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far‐red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2006.02773.x</identifier><identifier>PMID: 16740147</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - metabolism ; Arabidopsis Proteins - physiology ; Arabidopsis Proteins - radiation effects ; Basic Helix-Loop-Helix Transcription Factors - physiology ; Basic Helix-Loop-Helix Transcription Factors - radiation effects ; Biological and medical sciences ; Botany ; Flowers & plants ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Germination ; Germination - physiology ; Germination - radiation effects ; Germination and dormancy ; gibberellin ; Gibberellins - biosynthesis ; Gibberellins - metabolism ; Gibberellins - physiology ; Light ; Mutation ; phytochrome ; Phytochrome - physiology ; PIL5 ; Plant physiology and development ; protein degradation ; Proteins ; seed germination ; Seeds ; Seeds - physiology ; Seeds - radiation effects</subject><ispartof>The Plant journal : for cell and molecular biology, 2006-07, Vol.47 (1), p.124-139</ispartof><rights>2006 INIST-CNRS</rights><rights>2006 The Authors Journal compilation 2006 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5953-4bdc53a3d1391dd2e089bd9b1c41fe1b6963121c2671dd04e448cc58d1df137c3</citedby><cites>FETCH-LOGICAL-c5953-4bdc53a3d1391dd2e089bd9b1c41fe1b6963121c2671dd04e448cc58d1df137c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2006.02773.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2006.02773.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17864584$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16740147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Eunkyoo</creatorcontrib><creatorcontrib>Yamaguchi, Shinjiro</creatorcontrib><creatorcontrib>Kamiya, Yuji</creatorcontrib><creatorcontrib>Bae, Gabyong</creatorcontrib><creatorcontrib>Chung, Won‐Il</creatorcontrib><creatorcontrib>Choi, Giltsu</creatorcontrib><title>Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome‐interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA‐ and PHYB‐dependent germination assays. Consistent with these gene‐expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far‐red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis Proteins - radiation effects</subject><subject>Basic Helix-Loop-Helix Transcription Factors - physiology</subject><subject>Basic Helix-Loop-Helix Transcription Factors - radiation effects</subject><subject>Biological and medical sciences</subject><subject>Botany</subject><subject>Flowers & plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germination</subject><subject>Germination - physiology</subject><subject>Germination - radiation effects</subject><subject>Germination and dormancy</subject><subject>gibberellin</subject><subject>Gibberellins - biosynthesis</subject><subject>Gibberellins - metabolism</subject><subject>Gibberellins - physiology</subject><subject>Light</subject><subject>Mutation</subject><subject>phytochrome</subject><subject>Phytochrome - physiology</subject><subject>PIL5</subject><subject>Plant physiology and development</subject><subject>protein degradation</subject><subject>Proteins</subject><subject>seed germination</subject><subject>Seeds</subject><subject>Seeds - physiology</subject><subject>Seeds - radiation effects</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVpaTZp_0IRhfZmVyPJkn3oIYR-pCw0hxR6E7Ike7XY1lay0-TfV84uDfTUQTAj5pnhZV6EMJAScnzYl8BEVTBgP0tKiCgJlZKV98_Q5m_jOdqQRpBCcqBn6DylPSEgmeAv0RkIyQlwuUHT1ve7GWsz-zs9u4TnncPW9VFbPfsw4dDhm-tthQ8xzM5PeA5rOeYPTs5Z3Ls4-unIzrsYln6He9-2LrphyHx-l1G33oZD8ukVetHpIbnXp3yBfnz-dHv1tdh-_3J9dbktTNVUrOCtNRXTzAJrwFrqSN20tmnBcOgctKIRDCgYKmRuE-44r42pagu2AyYNu0Dvj3uz1l-LS7MafTJZkZ5cWJIStaDQcJnBt_-A-7DEKWtTFFgFUjCaofoImRhSiq5Th-hHHR8UELUaovZqvbta765WQ9SjIeo-j7457V_a0dmnwZMDGXh3AnQyeuiinoxPT5ysBa9qnrmPR-63H9zDfwtQtzff1or9Aa10p2M</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Oh, Eunkyoo</creator><creator>Yamaguchi, Shinjiro</creator><creator>Kamiya, Yuji</creator><creator>Bae, Gabyong</creator><creator>Chung, Won‐Il</creator><creator>Choi, Giltsu</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200607</creationdate><title>Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis</title><author>Oh, Eunkyoo ; Yamaguchi, Shinjiro ; Kamiya, Yuji ; Bae, Gabyong ; Chung, Won‐Il ; Choi, Giltsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5953-4bdc53a3d1391dd2e089bd9b1c41fe1b6963121c2671dd04e448cc58d1df137c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis Proteins - radiation effects</topic><topic>Basic Helix-Loop-Helix Transcription Factors - physiology</topic><topic>Basic Helix-Loop-Helix Transcription Factors - radiation effects</topic><topic>Biological and medical sciences</topic><topic>Botany</topic><topic>Flowers & plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germination</topic><topic>Germination - physiology</topic><topic>Germination - radiation effects</topic><topic>Germination and dormancy</topic><topic>gibberellin</topic><topic>Gibberellins - biosynthesis</topic><topic>Gibberellins - metabolism</topic><topic>Gibberellins - physiology</topic><topic>Light</topic><topic>Mutation</topic><topic>phytochrome</topic><topic>Phytochrome - physiology</topic><topic>PIL5</topic><topic>Plant physiology and development</topic><topic>protein degradation</topic><topic>Proteins</topic><topic>seed germination</topic><topic>Seeds</topic><topic>Seeds - physiology</topic><topic>Seeds - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Eunkyoo</creatorcontrib><creatorcontrib>Yamaguchi, Shinjiro</creatorcontrib><creatorcontrib>Kamiya, Yuji</creatorcontrib><creatorcontrib>Bae, Gabyong</creatorcontrib><creatorcontrib>Chung, Won‐Il</creatorcontrib><creatorcontrib>Choi, Giltsu</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Eunkyoo</au><au>Yamaguchi, Shinjiro</au><au>Kamiya, Yuji</au><au>Bae, Gabyong</au><au>Chung, Won‐Il</au><au>Choi, Giltsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2006-07</date><risdate>2006</risdate><volume>47</volume><issue>1</issue><spage>124</spage><epage>139</epage><pages>124-139</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome‐interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA‐ and PHYB‐dependent germination assays. Consistent with these gene‐expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far‐red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16740147</pmid><doi>10.1111/j.1365-313X.2006.02773.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2006-07, Vol.47 (1), p.124-139 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_68621947 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Arabidopsis Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - physiology Arabidopsis Proteins - radiation effects Basic Helix-Loop-Helix Transcription Factors - physiology Basic Helix-Loop-Helix Transcription Factors - radiation effects Biological and medical sciences Botany Flowers & plants Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant Germination Germination - physiology Germination - radiation effects Germination and dormancy gibberellin Gibberellins - biosynthesis Gibberellins - metabolism Gibberellins - physiology Light Mutation phytochrome Phytochrome - physiology PIL5 Plant physiology and development protein degradation Proteins seed germination Seeds Seeds - physiology Seeds - radiation effects |
title | Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20activates%20the%20degradation%20of%20PIL5%20protein%20to%20promote%20seed%20germination%20through%20gibberellin%20in%20Arabidopsis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Oh,%20Eunkyoo&rft.date=2006-07&rft.volume=47&rft.issue=1&rft.spage=124&rft.epage=139&rft.pages=124-139&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2006.02773.x&rft_dat=%3Cproquest_cross%3E1062566721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213517632&rft_id=info:pmid/16740147&rfr_iscdi=true |