Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis

Summary Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2006-07, Vol.47 (1), p.124-139
Hauptverfasser: Oh, Eunkyoo, Yamaguchi, Shinjiro, Kamiya, Yuji, Bae, Gabyong, Chung, Won‐Il, Choi, Giltsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 1
container_start_page 124
container_title The Plant journal : for cell and molecular biology
container_volume 47
creator Oh, Eunkyoo
Yamaguchi, Shinjiro
Kamiya, Yuji
Bae, Gabyong
Chung, Won‐Il
Choi, Giltsu
description Summary Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome‐interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA‐ and PHYB‐dependent germination assays. Consistent with these gene‐expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far‐red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation.
doi_str_mv 10.1111/j.1365-313X.2006.02773.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68621947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1062566721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5953-4bdc53a3d1391dd2e089bd9b1c41fe1b6963121c2671dd04e448cc58d1df137c3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpaTZp_0IRhfZmVyPJkn3oIYR-pCw0hxR6E7Ike7XY1lay0-TfV84uDfTUQTAj5pnhZV6EMJAScnzYl8BEVTBgP0tKiCgJlZKV98_Q5m_jOdqQRpBCcqBn6DylPSEgmeAv0RkIyQlwuUHT1ve7GWsz-zs9u4TnncPW9VFbPfsw4dDhm-tthQ8xzM5PeA5rOeYPTs5Z3Ls4-unIzrsYln6He9-2LrphyHx-l1G33oZD8ukVetHpIbnXp3yBfnz-dHv1tdh-_3J9dbktTNVUrOCtNRXTzAJrwFrqSN20tmnBcOgctKIRDCgYKmRuE-44r42pagu2AyYNu0Dvj3uz1l-LS7MafTJZkZ5cWJIStaDQcJnBt_-A-7DEKWtTFFgFUjCaofoImRhSiq5Th-hHHR8UELUaovZqvbta765WQ9SjIeo-j7457V_a0dmnwZMDGXh3AnQyeuiinoxPT5ysBa9qnrmPR-63H9zDfwtQtzff1or9Aa10p2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213517632</pqid></control><display><type>article</type><title>Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Oh, Eunkyoo ; Yamaguchi, Shinjiro ; Kamiya, Yuji ; Bae, Gabyong ; Chung, Won‐Il ; Choi, Giltsu</creator><creatorcontrib>Oh, Eunkyoo ; Yamaguchi, Shinjiro ; Kamiya, Yuji ; Bae, Gabyong ; Chung, Won‐Il ; Choi, Giltsu</creatorcontrib><description>Summary Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome‐interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA‐ and PHYB‐dependent germination assays. Consistent with these gene‐expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far‐red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2006.02773.x</identifier><identifier>PMID: 16740147</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - physiology ; Arabidopsis Proteins - radiation effects ; Basic Helix-Loop-Helix Transcription Factors - physiology ; Basic Helix-Loop-Helix Transcription Factors - radiation effects ; Biological and medical sciences ; Botany ; Flowers &amp; plants ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Germination ; Germination - physiology ; Germination - radiation effects ; Germination and dormancy ; gibberellin ; Gibberellins - biosynthesis ; Gibberellins - metabolism ; Gibberellins - physiology ; Light ; Mutation ; phytochrome ; Phytochrome - physiology ; PIL5 ; Plant physiology and development ; protein degradation ; Proteins ; seed germination ; Seeds ; Seeds - physiology ; Seeds - radiation effects</subject><ispartof>The Plant journal : for cell and molecular biology, 2006-07, Vol.47 (1), p.124-139</ispartof><rights>2006 INIST-CNRS</rights><rights>2006 The Authors Journal compilation 2006 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5953-4bdc53a3d1391dd2e089bd9b1c41fe1b6963121c2671dd04e448cc58d1df137c3</citedby><cites>FETCH-LOGICAL-c5953-4bdc53a3d1391dd2e089bd9b1c41fe1b6963121c2671dd04e448cc58d1df137c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2006.02773.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2006.02773.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17864584$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16740147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Eunkyoo</creatorcontrib><creatorcontrib>Yamaguchi, Shinjiro</creatorcontrib><creatorcontrib>Kamiya, Yuji</creatorcontrib><creatorcontrib>Bae, Gabyong</creatorcontrib><creatorcontrib>Chung, Won‐Il</creatorcontrib><creatorcontrib>Choi, Giltsu</creatorcontrib><title>Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome‐interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA‐ and PHYB‐dependent germination assays. Consistent with these gene‐expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far‐red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis Proteins - radiation effects</subject><subject>Basic Helix-Loop-Helix Transcription Factors - physiology</subject><subject>Basic Helix-Loop-Helix Transcription Factors - radiation effects</subject><subject>Biological and medical sciences</subject><subject>Botany</subject><subject>Flowers &amp; plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germination</subject><subject>Germination - physiology</subject><subject>Germination - radiation effects</subject><subject>Germination and dormancy</subject><subject>gibberellin</subject><subject>Gibberellins - biosynthesis</subject><subject>Gibberellins - metabolism</subject><subject>Gibberellins - physiology</subject><subject>Light</subject><subject>Mutation</subject><subject>phytochrome</subject><subject>Phytochrome - physiology</subject><subject>PIL5</subject><subject>Plant physiology and development</subject><subject>protein degradation</subject><subject>Proteins</subject><subject>seed germination</subject><subject>Seeds</subject><subject>Seeds - physiology</subject><subject>Seeds - radiation effects</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVpaTZp_0IRhfZmVyPJkn3oIYR-pCw0hxR6E7Ike7XY1lay0-TfV84uDfTUQTAj5pnhZV6EMJAScnzYl8BEVTBgP0tKiCgJlZKV98_Q5m_jOdqQRpBCcqBn6DylPSEgmeAv0RkIyQlwuUHT1ve7GWsz-zs9u4TnncPW9VFbPfsw4dDhm-tthQ8xzM5PeA5rOeYPTs5Z3Ls4-unIzrsYln6He9-2LrphyHx-l1G33oZD8ukVetHpIbnXp3yBfnz-dHv1tdh-_3J9dbktTNVUrOCtNRXTzAJrwFrqSN20tmnBcOgctKIRDCgYKmRuE-44r42pagu2AyYNu0Dvj3uz1l-LS7MafTJZkZ5cWJIStaDQcJnBt_-A-7DEKWtTFFgFUjCaofoImRhSiq5Th-hHHR8UELUaovZqvbta765WQ9SjIeo-j7457V_a0dmnwZMDGXh3AnQyeuiinoxPT5ysBa9qnrmPR-63H9zDfwtQtzff1or9Aa10p2M</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Oh, Eunkyoo</creator><creator>Yamaguchi, Shinjiro</creator><creator>Kamiya, Yuji</creator><creator>Bae, Gabyong</creator><creator>Chung, Won‐Il</creator><creator>Choi, Giltsu</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200607</creationdate><title>Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis</title><author>Oh, Eunkyoo ; Yamaguchi, Shinjiro ; Kamiya, Yuji ; Bae, Gabyong ; Chung, Won‐Il ; Choi, Giltsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5953-4bdc53a3d1391dd2e089bd9b1c41fe1b6963121c2671dd04e448cc58d1df137c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis Proteins - radiation effects</topic><topic>Basic Helix-Loop-Helix Transcription Factors - physiology</topic><topic>Basic Helix-Loop-Helix Transcription Factors - radiation effects</topic><topic>Biological and medical sciences</topic><topic>Botany</topic><topic>Flowers &amp; plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germination</topic><topic>Germination - physiology</topic><topic>Germination - radiation effects</topic><topic>Germination and dormancy</topic><topic>gibberellin</topic><topic>Gibberellins - biosynthesis</topic><topic>Gibberellins - metabolism</topic><topic>Gibberellins - physiology</topic><topic>Light</topic><topic>Mutation</topic><topic>phytochrome</topic><topic>Phytochrome - physiology</topic><topic>PIL5</topic><topic>Plant physiology and development</topic><topic>protein degradation</topic><topic>Proteins</topic><topic>seed germination</topic><topic>Seeds</topic><topic>Seeds - physiology</topic><topic>Seeds - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Eunkyoo</creatorcontrib><creatorcontrib>Yamaguchi, Shinjiro</creatorcontrib><creatorcontrib>Kamiya, Yuji</creatorcontrib><creatorcontrib>Bae, Gabyong</creatorcontrib><creatorcontrib>Chung, Won‐Il</creatorcontrib><creatorcontrib>Choi, Giltsu</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Eunkyoo</au><au>Yamaguchi, Shinjiro</au><au>Kamiya, Yuji</au><au>Bae, Gabyong</au><au>Chung, Won‐Il</au><au>Choi, Giltsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2006-07</date><risdate>2006</risdate><volume>47</volume><issue>1</issue><spage>124</spage><epage>139</epage><pages>124-139</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome‐interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA‐ and PHYB‐dependent germination assays. Consistent with these gene‐expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far‐red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16740147</pmid><doi>10.1111/j.1365-313X.2006.02773.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2006-07, Vol.47 (1), p.124-139
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_68621947
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - physiology
Arabidopsis Proteins - radiation effects
Basic Helix-Loop-Helix Transcription Factors - physiology
Basic Helix-Loop-Helix Transcription Factors - radiation effects
Biological and medical sciences
Botany
Flowers & plants
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Germination
Germination - physiology
Germination - radiation effects
Germination and dormancy
gibberellin
Gibberellins - biosynthesis
Gibberellins - metabolism
Gibberellins - physiology
Light
Mutation
phytochrome
Phytochrome - physiology
PIL5
Plant physiology and development
protein degradation
Proteins
seed germination
Seeds
Seeds - physiology
Seeds - radiation effects
title Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20activates%20the%20degradation%20of%20PIL5%20protein%20to%20promote%20seed%20germination%20through%20gibberellin%20in%20Arabidopsis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Oh,%20Eunkyoo&rft.date=2006-07&rft.volume=47&rft.issue=1&rft.spage=124&rft.epage=139&rft.pages=124-139&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2006.02773.x&rft_dat=%3Cproquest_cross%3E1062566721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213517632&rft_id=info:pmid/16740147&rfr_iscdi=true