Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products
Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial specie...
Gespeichert in:
Veröffentlicht in: | Journal of antimicrobial chemotherapy 2006-07, Vol.58 (1), p.85-94 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 85 |
container_title | Journal of antimicrobial chemotherapy |
container_volume | 58 |
creator | Masco, L. Van Hoorde, K. De Brandt, E. Swings, J. Huys, G. |
description | Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial species originating from humans, animals and probiotic products to 12 antimicrobial agents was tested by agar overlay disc diffusion. Based on these results, one or two strains per species were selected for susceptibility testing to nine antibiotics by broth microdilution using the Lactic acid bacteria Susceptibility test Medium (LSM) supplemented with cysteine. The genotypic basis of atypical tetracycline resistance was further characterized using PCR, Southern blotting and partial sequencing. Results: Based on the distribution of inhibition zone diameters and MIC values, all strains tested were susceptible to amoxicillin, chloramphenicol, erythromycin, quinupristin/dalfopristin, rifampicin and vancomycin. Our data also reinforce earlier observations indicating that bifidobacteria are intrinsically resistant to gentamicin, sulfamethoxazole and polymyxin B. Susceptibility to trimethoprim, trimethoprim/sulfamethoxazole, ciprofloxacin, clindamycin, tetracycline and minocycline was variable. The tet(W) gene was responsible for tetracycline resistance in 15 strains including 7 probiotic isolates belonging to the taxa Bifidobacterium animalis subsp. lactis and Bifidobacterium bifidum. This gene was present in a single copy on the chromosome and did not appear to be associated with the conjugative transposon TnB1230 previously found in tet(W)-containing Butyrivibrio fibrisolvens. Conclusions: The use of the LSM + cysteine medium allowed us to discriminate between intrinsic and atypical resistance properties of bifidobacteria and sets the scene for future definition of epidemiological cut-off values for all important Bifidobacterium species. The presence of an acquired tet(W) gene in several probiotic product isolates stresses the need for a minimal safety evaluation during the selection of Bifidobacterium strains for probiotic use. |
doi_str_mv | 10.1093/jac/dkl197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68621375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19521805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-faa81f19513ded4e9598b68749fa822279f55f36a5bba62e623be948a9c1477a3</originalsourceid><addsrcrecordid>eNqFkctqHDEQRYVJsCeON_6A0AScRXDHerReS49JYsOAs0hI8EZUqyWicT_Gkhrsv4-GGWzwJqtSUYdbunUROiX4C8GaXazBXnT3PdHyAC1II3BNsSZv0AIzzGvZcHaE3qW0xhgLLtQhOiJCaKUauUD2csxhCDZObYC-SnOybpNDG_qQn6rJV8vgQze1YLOLYR6qlCOEMVU-TkP1dx5gTOcVjGGAPpXaVZut1JSD3b662eb0Hr31ZepO9vUY_fr29efVdb26_X5zdbmqLScs1x5AEU90aTrXNU5zrVqhZKM9KEqp1J5zzwTwtgVBnaCsdbpRoC1ppAR2jD7tdMvih9mlbIZQ7PQ9jG6akxFKUMIk_y9Y_kCJwlvw4ytwPc1xLCYMJVJo2khaoM87qBwxpei82cRyjvhkCDbbgEwJyOwCKvCHveLcDq57QfeJFOBsD0Cy0PsIow3phVOYEq5w4eodF1J2j89ziPdGyGLSXP-5MyuGf2jxe2mW7B8a6Kld</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217692472</pqid></control><display><type>article</type><title>Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Masco, L. ; Van Hoorde, K. ; De Brandt, E. ; Swings, J. ; Huys, G.</creator><creatorcontrib>Masco, L. ; Van Hoorde, K. ; De Brandt, E. ; Swings, J. ; Huys, G.</creatorcontrib><description>Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial species originating from humans, animals and probiotic products to 12 antimicrobial agents was tested by agar overlay disc diffusion. Based on these results, one or two strains per species were selected for susceptibility testing to nine antibiotics by broth microdilution using the Lactic acid bacteria Susceptibility test Medium (LSM) supplemented with cysteine. The genotypic basis of atypical tetracycline resistance was further characterized using PCR, Southern blotting and partial sequencing. Results: Based on the distribution of inhibition zone diameters and MIC values, all strains tested were susceptible to amoxicillin, chloramphenicol, erythromycin, quinupristin/dalfopristin, rifampicin and vancomycin. Our data also reinforce earlier observations indicating that bifidobacteria are intrinsically resistant to gentamicin, sulfamethoxazole and polymyxin B. Susceptibility to trimethoprim, trimethoprim/sulfamethoxazole, ciprofloxacin, clindamycin, tetracycline and minocycline was variable. The tet(W) gene was responsible for tetracycline resistance in 15 strains including 7 probiotic isolates belonging to the taxa Bifidobacterium animalis subsp. lactis and Bifidobacterium bifidum. This gene was present in a single copy on the chromosome and did not appear to be associated with the conjugative transposon TnB1230 previously found in tet(W)-containing Butyrivibrio fibrisolvens. Conclusions: The use of the LSM + cysteine medium allowed us to discriminate between intrinsic and atypical resistance properties of bifidobacteria and sets the scene for future definition of epidemiological cut-off values for all important Bifidobacterium species. The presence of an acquired tet(W) gene in several probiotic product isolates stresses the need for a minimal safety evaluation during the selection of Bifidobacterium strains for probiotic use.</description><identifier>ISSN: 0305-7453</identifier><identifier>EISSN: 1460-2091</identifier><identifier>DOI: 10.1093/jac/dkl197</identifier><identifier>PMID: 16698847</identifier><identifier>CODEN: JACHDX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; Bifidobacterium - classification ; Bifidobacterium - drug effects ; Bifidobacterium animalis ; Bifidobacterium bifidum ; Biological and medical sciences ; Butyrivibrio fibrisolvens ; disc diffusion ; Drug Resistance, Bacterial ; Humans ; LSM ; Medical sciences ; Microbial Sensitivity Tests ; MICs ; Pharmacology. Drug treatments ; Probiotics - adverse effects ; tet(W) ; tetracyclines</subject><ispartof>Journal of antimicrobial chemotherapy, 2006-07, Vol.58 (1), p.85-94</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jul 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-faa81f19513ded4e9598b68749fa822279f55f36a5bba62e623be948a9c1477a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18021580$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16698847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masco, L.</creatorcontrib><creatorcontrib>Van Hoorde, K.</creatorcontrib><creatorcontrib>De Brandt, E.</creatorcontrib><creatorcontrib>Swings, J.</creatorcontrib><creatorcontrib>Huys, G.</creatorcontrib><title>Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products</title><title>Journal of antimicrobial chemotherapy</title><addtitle>J Antimicrob Chemother</addtitle><description>Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial species originating from humans, animals and probiotic products to 12 antimicrobial agents was tested by agar overlay disc diffusion. Based on these results, one or two strains per species were selected for susceptibility testing to nine antibiotics by broth microdilution using the Lactic acid bacteria Susceptibility test Medium (LSM) supplemented with cysteine. The genotypic basis of atypical tetracycline resistance was further characterized using PCR, Southern blotting and partial sequencing. Results: Based on the distribution of inhibition zone diameters and MIC values, all strains tested were susceptible to amoxicillin, chloramphenicol, erythromycin, quinupristin/dalfopristin, rifampicin and vancomycin. Our data also reinforce earlier observations indicating that bifidobacteria are intrinsically resistant to gentamicin, sulfamethoxazole and polymyxin B. Susceptibility to trimethoprim, trimethoprim/sulfamethoxazole, ciprofloxacin, clindamycin, tetracycline and minocycline was variable. The tet(W) gene was responsible for tetracycline resistance in 15 strains including 7 probiotic isolates belonging to the taxa Bifidobacterium animalis subsp. lactis and Bifidobacterium bifidum. This gene was present in a single copy on the chromosome and did not appear to be associated with the conjugative transposon TnB1230 previously found in tet(W)-containing Butyrivibrio fibrisolvens. Conclusions: The use of the LSM + cysteine medium allowed us to discriminate between intrinsic and atypical resistance properties of bifidobacteria and sets the scene for future definition of epidemiological cut-off values for all important Bifidobacterium species. The presence of an acquired tet(W) gene in several probiotic product isolates stresses the need for a minimal safety evaluation during the selection of Bifidobacterium strains for probiotic use.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Bifidobacterium - classification</subject><subject>Bifidobacterium - drug effects</subject><subject>Bifidobacterium animalis</subject><subject>Bifidobacterium bifidum</subject><subject>Biological and medical sciences</subject><subject>Butyrivibrio fibrisolvens</subject><subject>disc diffusion</subject><subject>Drug Resistance, Bacterial</subject><subject>Humans</subject><subject>LSM</subject><subject>Medical sciences</subject><subject>Microbial Sensitivity Tests</subject><subject>MICs</subject><subject>Pharmacology. Drug treatments</subject><subject>Probiotics - adverse effects</subject><subject>tet(W)</subject><subject>tetracyclines</subject><issn>0305-7453</issn><issn>1460-2091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctqHDEQRYVJsCeON_6A0AScRXDHerReS49JYsOAs0hI8EZUqyWicT_Gkhrsv4-GGWzwJqtSUYdbunUROiX4C8GaXazBXnT3PdHyAC1II3BNsSZv0AIzzGvZcHaE3qW0xhgLLtQhOiJCaKUauUD2csxhCDZObYC-SnOybpNDG_qQn6rJV8vgQze1YLOLYR6qlCOEMVU-TkP1dx5gTOcVjGGAPpXaVZut1JSD3b662eb0Hr31ZepO9vUY_fr29efVdb26_X5zdbmqLScs1x5AEU90aTrXNU5zrVqhZKM9KEqp1J5zzwTwtgVBnaCsdbpRoC1ppAR2jD7tdMvih9mlbIZQ7PQ9jG6akxFKUMIk_y9Y_kCJwlvw4ytwPc1xLCYMJVJo2khaoM87qBwxpei82cRyjvhkCDbbgEwJyOwCKvCHveLcDq57QfeJFOBsD0Cy0PsIow3phVOYEq5w4eodF1J2j89ziPdGyGLSXP-5MyuGf2jxe2mW7B8a6Kld</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Masco, L.</creator><creator>Van Hoorde, K.</creator><creator>De Brandt, E.</creator><creator>Swings, J.</creator><creator>Huys, G.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products</title><author>Masco, L. ; Van Hoorde, K. ; De Brandt, E. ; Swings, J. ; Huys, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-faa81f19513ded4e9598b68749fa822279f55f36a5bba62e623be948a9c1477a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Bifidobacterium - classification</topic><topic>Bifidobacterium - drug effects</topic><topic>Bifidobacterium animalis</topic><topic>Bifidobacterium bifidum</topic><topic>Biological and medical sciences</topic><topic>Butyrivibrio fibrisolvens</topic><topic>disc diffusion</topic><topic>Drug Resistance, Bacterial</topic><topic>Humans</topic><topic>LSM</topic><topic>Medical sciences</topic><topic>Microbial Sensitivity Tests</topic><topic>MICs</topic><topic>Pharmacology. Drug treatments</topic><topic>Probiotics - adverse effects</topic><topic>tet(W)</topic><topic>tetracyclines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masco, L.</creatorcontrib><creatorcontrib>Van Hoorde, K.</creatorcontrib><creatorcontrib>De Brandt, E.</creatorcontrib><creatorcontrib>Swings, J.</creatorcontrib><creatorcontrib>Huys, G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of antimicrobial chemotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masco, L.</au><au>Van Hoorde, K.</au><au>De Brandt, E.</au><au>Swings, J.</au><au>Huys, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products</atitle><jtitle>Journal of antimicrobial chemotherapy</jtitle><addtitle>J Antimicrob Chemother</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>58</volume><issue>1</issue><spage>85</spage><epage>94</epage><pages>85-94</pages><issn>0305-7453</issn><eissn>1460-2091</eissn><coden>JACHDX</coden><abstract>Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial species originating from humans, animals and probiotic products to 12 antimicrobial agents was tested by agar overlay disc diffusion. Based on these results, one or two strains per species were selected for susceptibility testing to nine antibiotics by broth microdilution using the Lactic acid bacteria Susceptibility test Medium (LSM) supplemented with cysteine. The genotypic basis of atypical tetracycline resistance was further characterized using PCR, Southern blotting and partial sequencing. Results: Based on the distribution of inhibition zone diameters and MIC values, all strains tested were susceptible to amoxicillin, chloramphenicol, erythromycin, quinupristin/dalfopristin, rifampicin and vancomycin. Our data also reinforce earlier observations indicating that bifidobacteria are intrinsically resistant to gentamicin, sulfamethoxazole and polymyxin B. Susceptibility to trimethoprim, trimethoprim/sulfamethoxazole, ciprofloxacin, clindamycin, tetracycline and minocycline was variable. The tet(W) gene was responsible for tetracycline resistance in 15 strains including 7 probiotic isolates belonging to the taxa Bifidobacterium animalis subsp. lactis and Bifidobacterium bifidum. This gene was present in a single copy on the chromosome and did not appear to be associated with the conjugative transposon TnB1230 previously found in tet(W)-containing Butyrivibrio fibrisolvens. Conclusions: The use of the LSM + cysteine medium allowed us to discriminate between intrinsic and atypical resistance properties of bifidobacteria and sets the scene for future definition of epidemiological cut-off values for all important Bifidobacterium species. The presence of an acquired tet(W) gene in several probiotic product isolates stresses the need for a minimal safety evaluation during the selection of Bifidobacterium strains for probiotic use.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16698847</pmid><doi>10.1093/jac/dkl197</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-7453 |
ispartof | Journal of antimicrobial chemotherapy, 2006-07, Vol.58 (1), p.85-94 |
issn | 0305-7453 1460-2091 |
language | eng |
recordid | cdi_proquest_miscellaneous_68621375 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Animals Anti-Bacterial Agents - pharmacology Antibiotics. Antiinfectious agents. Antiparasitic agents Bifidobacterium - classification Bifidobacterium - drug effects Bifidobacterium animalis Bifidobacterium bifidum Biological and medical sciences Butyrivibrio fibrisolvens disc diffusion Drug Resistance, Bacterial Humans LSM Medical sciences Microbial Sensitivity Tests MICs Pharmacology. Drug treatments Probiotics - adverse effects tet(W) tetracyclines |
title | Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20susceptibility%20of%20Bifidobacterium%20strains%20from%20humans,%20animals%20and%20probiotic%20products&rft.jtitle=Journal%20of%20antimicrobial%20chemotherapy&rft.au=Masco,%20L.&rft.date=2006-07-01&rft.volume=58&rft.issue=1&rft.spage=85&rft.epage=94&rft.pages=85-94&rft.issn=0305-7453&rft.eissn=1460-2091&rft.coden=JACHDX&rft_id=info:doi/10.1093/jac/dkl197&rft_dat=%3Cproquest_cross%3E19521805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217692472&rft_id=info:pmid/16698847&rfr_iscdi=true |