Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products

Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial specie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of antimicrobial chemotherapy 2006-07, Vol.58 (1), p.85-94
Hauptverfasser: Masco, L., Van Hoorde, K., De Brandt, E., Swings, J., Huys, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 85
container_title Journal of antimicrobial chemotherapy
container_volume 58
creator Masco, L.
Van Hoorde, K.
De Brandt, E.
Swings, J.
Huys, G.
description Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial species originating from humans, animals and probiotic products to 12 antimicrobial agents was tested by agar overlay disc diffusion. Based on these results, one or two strains per species were selected for susceptibility testing to nine antibiotics by broth microdilution using the Lactic acid bacteria Susceptibility test Medium (LSM) supplemented with cysteine. The genotypic basis of atypical tetracycline resistance was further characterized using PCR, Southern blotting and partial sequencing. Results: Based on the distribution of inhibition zone diameters and MIC values, all strains tested were susceptible to amoxicillin, chloramphenicol, erythromycin, quinupristin/dalfopristin, rifampicin and vancomycin. Our data also reinforce earlier observations indicating that bifidobacteria are intrinsically resistant to gentamicin, sulfamethoxazole and polymyxin B. Susceptibility to trimethoprim, trimethoprim/sulfamethoxazole, ciprofloxacin, clindamycin, tetracycline and minocycline was variable. The tet(W) gene was responsible for tetracycline resistance in 15 strains including 7 probiotic isolates belonging to the taxa Bifidobacterium animalis subsp. lactis and Bifidobacterium bifidum. This gene was present in a single copy on the chromosome and did not appear to be associated with the conjugative transposon TnB1230 previously found in tet(W)-containing Butyrivibrio fibrisolvens. Conclusions: The use of the LSM + cysteine medium allowed us to discriminate between intrinsic and atypical resistance properties of bifidobacteria and sets the scene for future definition of epidemiological cut-off values for all important Bifidobacterium species. The presence of an acquired tet(W) gene in several probiotic product isolates stresses the need for a minimal safety evaluation during the selection of Bifidobacterium strains for probiotic use.
doi_str_mv 10.1093/jac/dkl197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68621375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19521805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-faa81f19513ded4e9598b68749fa822279f55f36a5bba62e623be948a9c1477a3</originalsourceid><addsrcrecordid>eNqFkctqHDEQRYVJsCeON_6A0AScRXDHerReS49JYsOAs0hI8EZUqyWicT_Gkhrsv4-GGWzwJqtSUYdbunUROiX4C8GaXazBXnT3PdHyAC1II3BNsSZv0AIzzGvZcHaE3qW0xhgLLtQhOiJCaKUauUD2csxhCDZObYC-SnOybpNDG_qQn6rJV8vgQze1YLOLYR6qlCOEMVU-TkP1dx5gTOcVjGGAPpXaVZut1JSD3b662eb0Hr31ZepO9vUY_fr29efVdb26_X5zdbmqLScs1x5AEU90aTrXNU5zrVqhZKM9KEqp1J5zzwTwtgVBnaCsdbpRoC1ppAR2jD7tdMvih9mlbIZQ7PQ9jG6akxFKUMIk_y9Y_kCJwlvw4ytwPc1xLCYMJVJo2khaoM87qBwxpei82cRyjvhkCDbbgEwJyOwCKvCHveLcDq57QfeJFOBsD0Cy0PsIow3phVOYEq5w4eodF1J2j89ziPdGyGLSXP-5MyuGf2jxe2mW7B8a6Kld</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217692472</pqid></control><display><type>article</type><title>Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Masco, L. ; Van Hoorde, K. ; De Brandt, E. ; Swings, J. ; Huys, G.</creator><creatorcontrib>Masco, L. ; Van Hoorde, K. ; De Brandt, E. ; Swings, J. ; Huys, G.</creatorcontrib><description>Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial species originating from humans, animals and probiotic products to 12 antimicrobial agents was tested by agar overlay disc diffusion. Based on these results, one or two strains per species were selected for susceptibility testing to nine antibiotics by broth microdilution using the Lactic acid bacteria Susceptibility test Medium (LSM) supplemented with cysteine. The genotypic basis of atypical tetracycline resistance was further characterized using PCR, Southern blotting and partial sequencing. Results: Based on the distribution of inhibition zone diameters and MIC values, all strains tested were susceptible to amoxicillin, chloramphenicol, erythromycin, quinupristin/dalfopristin, rifampicin and vancomycin. Our data also reinforce earlier observations indicating that bifidobacteria are intrinsically resistant to gentamicin, sulfamethoxazole and polymyxin B. Susceptibility to trimethoprim, trimethoprim/sulfamethoxazole, ciprofloxacin, clindamycin, tetracycline and minocycline was variable. The tet(W) gene was responsible for tetracycline resistance in 15 strains including 7 probiotic isolates belonging to the taxa Bifidobacterium animalis subsp. lactis and Bifidobacterium bifidum. This gene was present in a single copy on the chromosome and did not appear to be associated with the conjugative transposon TnB1230 previously found in tet(W)-containing Butyrivibrio fibrisolvens. Conclusions: The use of the LSM + cysteine medium allowed us to discriminate between intrinsic and atypical resistance properties of bifidobacteria and sets the scene for future definition of epidemiological cut-off values for all important Bifidobacterium species. The presence of an acquired tet(W) gene in several probiotic product isolates stresses the need for a minimal safety evaluation during the selection of Bifidobacterium strains for probiotic use.</description><identifier>ISSN: 0305-7453</identifier><identifier>EISSN: 1460-2091</identifier><identifier>DOI: 10.1093/jac/dkl197</identifier><identifier>PMID: 16698847</identifier><identifier>CODEN: JACHDX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; Bifidobacterium - classification ; Bifidobacterium - drug effects ; Bifidobacterium animalis ; Bifidobacterium bifidum ; Biological and medical sciences ; Butyrivibrio fibrisolvens ; disc diffusion ; Drug Resistance, Bacterial ; Humans ; LSM ; Medical sciences ; Microbial Sensitivity Tests ; MICs ; Pharmacology. Drug treatments ; Probiotics - adverse effects ; tet(W) ; tetracyclines</subject><ispartof>Journal of antimicrobial chemotherapy, 2006-07, Vol.58 (1), p.85-94</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jul 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-faa81f19513ded4e9598b68749fa822279f55f36a5bba62e623be948a9c1477a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18021580$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16698847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masco, L.</creatorcontrib><creatorcontrib>Van Hoorde, K.</creatorcontrib><creatorcontrib>De Brandt, E.</creatorcontrib><creatorcontrib>Swings, J.</creatorcontrib><creatorcontrib>Huys, G.</creatorcontrib><title>Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products</title><title>Journal of antimicrobial chemotherapy</title><addtitle>J Antimicrob Chemother</addtitle><description>Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial species originating from humans, animals and probiotic products to 12 antimicrobial agents was tested by agar overlay disc diffusion. Based on these results, one or two strains per species were selected for susceptibility testing to nine antibiotics by broth microdilution using the Lactic acid bacteria Susceptibility test Medium (LSM) supplemented with cysteine. The genotypic basis of atypical tetracycline resistance was further characterized using PCR, Southern blotting and partial sequencing. Results: Based on the distribution of inhibition zone diameters and MIC values, all strains tested were susceptible to amoxicillin, chloramphenicol, erythromycin, quinupristin/dalfopristin, rifampicin and vancomycin. Our data also reinforce earlier observations indicating that bifidobacteria are intrinsically resistant to gentamicin, sulfamethoxazole and polymyxin B. Susceptibility to trimethoprim, trimethoprim/sulfamethoxazole, ciprofloxacin, clindamycin, tetracycline and minocycline was variable. The tet(W) gene was responsible for tetracycline resistance in 15 strains including 7 probiotic isolates belonging to the taxa Bifidobacterium animalis subsp. lactis and Bifidobacterium bifidum. This gene was present in a single copy on the chromosome and did not appear to be associated with the conjugative transposon TnB1230 previously found in tet(W)-containing Butyrivibrio fibrisolvens. Conclusions: The use of the LSM + cysteine medium allowed us to discriminate between intrinsic and atypical resistance properties of bifidobacteria and sets the scene for future definition of epidemiological cut-off values for all important Bifidobacterium species. The presence of an acquired tet(W) gene in several probiotic product isolates stresses the need for a minimal safety evaluation during the selection of Bifidobacterium strains for probiotic use.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Bifidobacterium - classification</subject><subject>Bifidobacterium - drug effects</subject><subject>Bifidobacterium animalis</subject><subject>Bifidobacterium bifidum</subject><subject>Biological and medical sciences</subject><subject>Butyrivibrio fibrisolvens</subject><subject>disc diffusion</subject><subject>Drug Resistance, Bacterial</subject><subject>Humans</subject><subject>LSM</subject><subject>Medical sciences</subject><subject>Microbial Sensitivity Tests</subject><subject>MICs</subject><subject>Pharmacology. Drug treatments</subject><subject>Probiotics - adverse effects</subject><subject>tet(W)</subject><subject>tetracyclines</subject><issn>0305-7453</issn><issn>1460-2091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctqHDEQRYVJsCeON_6A0AScRXDHerReS49JYsOAs0hI8EZUqyWicT_Gkhrsv4-GGWzwJqtSUYdbunUROiX4C8GaXazBXnT3PdHyAC1II3BNsSZv0AIzzGvZcHaE3qW0xhgLLtQhOiJCaKUauUD2csxhCDZObYC-SnOybpNDG_qQn6rJV8vgQze1YLOLYR6qlCOEMVU-TkP1dx5gTOcVjGGAPpXaVZut1JSD3b662eb0Hr31ZepO9vUY_fr29efVdb26_X5zdbmqLScs1x5AEU90aTrXNU5zrVqhZKM9KEqp1J5zzwTwtgVBnaCsdbpRoC1ppAR2jD7tdMvih9mlbIZQ7PQ9jG6akxFKUMIk_y9Y_kCJwlvw4ytwPc1xLCYMJVJo2khaoM87qBwxpei82cRyjvhkCDbbgEwJyOwCKvCHveLcDq57QfeJFOBsD0Cy0PsIow3phVOYEq5w4eodF1J2j89ziPdGyGLSXP-5MyuGf2jxe2mW7B8a6Kld</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Masco, L.</creator><creator>Van Hoorde, K.</creator><creator>De Brandt, E.</creator><creator>Swings, J.</creator><creator>Huys, G.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products</title><author>Masco, L. ; Van Hoorde, K. ; De Brandt, E. ; Swings, J. ; Huys, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-faa81f19513ded4e9598b68749fa822279f55f36a5bba62e623be948a9c1477a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Bifidobacterium - classification</topic><topic>Bifidobacterium - drug effects</topic><topic>Bifidobacterium animalis</topic><topic>Bifidobacterium bifidum</topic><topic>Biological and medical sciences</topic><topic>Butyrivibrio fibrisolvens</topic><topic>disc diffusion</topic><topic>Drug Resistance, Bacterial</topic><topic>Humans</topic><topic>LSM</topic><topic>Medical sciences</topic><topic>Microbial Sensitivity Tests</topic><topic>MICs</topic><topic>Pharmacology. Drug treatments</topic><topic>Probiotics - adverse effects</topic><topic>tet(W)</topic><topic>tetracyclines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masco, L.</creatorcontrib><creatorcontrib>Van Hoorde, K.</creatorcontrib><creatorcontrib>De Brandt, E.</creatorcontrib><creatorcontrib>Swings, J.</creatorcontrib><creatorcontrib>Huys, G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of antimicrobial chemotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masco, L.</au><au>Van Hoorde, K.</au><au>De Brandt, E.</au><au>Swings, J.</au><au>Huys, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products</atitle><jtitle>Journal of antimicrobial chemotherapy</jtitle><addtitle>J Antimicrob Chemother</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>58</volume><issue>1</issue><spage>85</spage><epage>94</epage><pages>85-94</pages><issn>0305-7453</issn><eissn>1460-2091</eissn><coden>JACHDX</coden><abstract>Objectives: The aim of this study was to assess the antimicrobial susceptibility of a taxonomically diverse set of Bifidobacterium strains to different classes of antimicrobial agents using a recently described medium. Methods: The susceptibility of 100 strains encompassing 11 bifidobacterial species originating from humans, animals and probiotic products to 12 antimicrobial agents was tested by agar overlay disc diffusion. Based on these results, one or two strains per species were selected for susceptibility testing to nine antibiotics by broth microdilution using the Lactic acid bacteria Susceptibility test Medium (LSM) supplemented with cysteine. The genotypic basis of atypical tetracycline resistance was further characterized using PCR, Southern blotting and partial sequencing. Results: Based on the distribution of inhibition zone diameters and MIC values, all strains tested were susceptible to amoxicillin, chloramphenicol, erythromycin, quinupristin/dalfopristin, rifampicin and vancomycin. Our data also reinforce earlier observations indicating that bifidobacteria are intrinsically resistant to gentamicin, sulfamethoxazole and polymyxin B. Susceptibility to trimethoprim, trimethoprim/sulfamethoxazole, ciprofloxacin, clindamycin, tetracycline and minocycline was variable. The tet(W) gene was responsible for tetracycline resistance in 15 strains including 7 probiotic isolates belonging to the taxa Bifidobacterium animalis subsp. lactis and Bifidobacterium bifidum. This gene was present in a single copy on the chromosome and did not appear to be associated with the conjugative transposon TnB1230 previously found in tet(W)-containing Butyrivibrio fibrisolvens. Conclusions: The use of the LSM + cysteine medium allowed us to discriminate between intrinsic and atypical resistance properties of bifidobacteria and sets the scene for future definition of epidemiological cut-off values for all important Bifidobacterium species. The presence of an acquired tet(W) gene in several probiotic product isolates stresses the need for a minimal safety evaluation during the selection of Bifidobacterium strains for probiotic use.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16698847</pmid><doi>10.1093/jac/dkl197</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-7453
ispartof Journal of antimicrobial chemotherapy, 2006-07, Vol.58 (1), p.85-94
issn 0305-7453
1460-2091
language eng
recordid cdi_proquest_miscellaneous_68621375
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Anti-Bacterial Agents - pharmacology
Antibiotics. Antiinfectious agents. Antiparasitic agents
Bifidobacterium - classification
Bifidobacterium - drug effects
Bifidobacterium animalis
Bifidobacterium bifidum
Biological and medical sciences
Butyrivibrio fibrisolvens
disc diffusion
Drug Resistance, Bacterial
Humans
LSM
Medical sciences
Microbial Sensitivity Tests
MICs
Pharmacology. Drug treatments
Probiotics - adverse effects
tet(W)
tetracyclines
title Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20susceptibility%20of%20Bifidobacterium%20strains%20from%20humans,%20animals%20and%20probiotic%20products&rft.jtitle=Journal%20of%20antimicrobial%20chemotherapy&rft.au=Masco,%20L.&rft.date=2006-07-01&rft.volume=58&rft.issue=1&rft.spage=85&rft.epage=94&rft.pages=85-94&rft.issn=0305-7453&rft.eissn=1460-2091&rft.coden=JACHDX&rft_id=info:doi/10.1093/jac/dkl197&rft_dat=%3Cproquest_cross%3E19521805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217692472&rft_id=info:pmid/16698847&rfr_iscdi=true